chunk_32.json•1.46 kB
{
"id": "chunk_32",
"text": "280 T2 = T1-H*SB 15.13 \n290 REM Compute overturning and sliding \nstability of wall \n \n300 HO = L1*TAN(K3) 1.675 \n310 H3 = HO+H 27.675106 \n320 WA = 0.5*(H+H3)*L1/1000*W1 29.31 Kips \n330 AT =L1*H+0.5*L1*HO 254.956 \n340 X1 = (H*L1*L1/2+0.5*L1*H0*2/3*L1)AT 4.7994 \n350 XA =X1+L2+T1/12 9.6019 \n360 MA = WA*XA 281.4316 \n370 WB = T2/12*H*150/1000 4.924685 \n380 XB = T2/24+L2+SB*H/12 4.17 Feet \n390 MB =WB*XB 20.477 Feet \n400 WC = 0.5*(T1-T2)*150*H/12000 1.05625 Inch Kips \n410 XC = 0.6667*(T1-T2)/12+L2 3.361129 \n420 MC = WC*XC 3.5501926 \n430 L4 = L1+L2+T1/12 14.3025 \n440 REM Our next line number would be 730 \n730 STOP \n740 PRINT” Sliding stability of retaining wall \nsection okay no revision necessary” \n \n745 REM Checked uplift pressure at toe or \nbase \n \n750 X2 = (MT-MAH)/WT 4.728 Feet \n760 E1 = XD-X2 2.4245 Feet \n770 E2 = L4/6 2.38375 Feet \n780 IF E1>E2 THEN 800 \n790 IF E1<E2 THEN 820 \n\n264 \n \n800 PRINT” Assumed dimensions not okay for \neccentricity uplift pressure at base or heel",
"metadata": {
"book_id": 34880,
"title": "BASIC-STRUCTURAL-388457483-Retaining-Wall-Design-Analytical-and-Computer-Methods-By-Ben-David-CE",
"authors": "Ben David",
"project": "basic_structural",
"content_source": "ocr",
"content_length": 39295,
"chunk_index": 32,
"line_start": 1278,
"line_end": 1313,
"has_formulas": false,
"has_tables": false
}
}