Skip to main content
Glama

Calibre RAG MCP Server

by ispyridis
chunk_453.json1.46 kB
{ "id": "chunk_453", "text": ") h\n0\n] crbc-AP CJP et l'axe neutre est dans Ia nervure. \nlei, h\n0 \nf d = 0,0275 I 0,1685 = 0,1632 < ro = 0,1881, !'axe neutre est dans les nervures et \nN = [0,208 x0,33 x0,1685 + (1,196-0,33)0,0275] 14,17-4x93x 10-\n6\nx 1444 = -0,3582 < o \nOn peut alors calculer le moment resistant M,u : \n0 SiN~ 0 et h\n0 \n/ d ~ ro: Mru = AP CJP d (1 -ro / 2) \n0 \nSi N ~ 0 et h\n0 \nI d < ro: M,u = AP crP d [1 -rob I (2 h\n0\n) + (b-ho) hoI (2 hod)] \n0 Si N < 0 ce qui est notre cas, on calcule A\n1 \net Az \n0,208 d b CJ beEP \nA., = A cr ( cr -cr + 0,0035EP) \np P p pm \n0,208 d b\n0 \nCJbcEP+ (b-b\n0\n)h\n0\nCJbc(CJp-CJpm+0,0035Ep) \n\"-2 = A cr ( cr -cr + 0,0035Ep) \np p p pm \n1..\n1 \net A.z sont plafonnes a 1 ($ 1) \nSi h\n0 \nf d ~ A\n1 \nro, alors Mru = A\n1 \nAp CJp d (1 -A., ro I 2) \nSi h\n0 \nf d < \"-z ro, alors M,u = Az AP CJP d [1 -A\n1 \nb ro / (2 h\n0\n) \n+ (b-, h\n0\n) \nh\n0 \nf (2 hod)]) \nAvec cr = contrainte finale permanente dans les armatures de precontramte : \npm \ncr = cr -~CJ = 0 8 CJpo (= 1 265 MPa dans notre exemple) \npm po p • \nlei:", "metadata": { "book_id": 34848, "title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2", "authors": "Unknown", "project": "basic_structural", "content_source": "ocr", "content_length": 756676, "chunk_index": 453, "line_start": 16006, "line_end": 16067, "has_formulas": true, "has_tables": false } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ispyridis/calibre-rag-mcp-nodejs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server