chunk_278.json•1.5 kB
{
"id": "chunk_278",
"text": "soude TS 8-6-100-200. \n3. DALLE RECTANGULAIRE ARTICULEE \nSUR SES QUATRE \nC6TES \n3.1. Solution de Navier (Fig.8) \nLes demonstrations des formules qui sui vent figurent dans le livre de Jean Courbon, Resis-\ntance des Materiaux [53]. . . terieure sous Ia forme de \nNavier propose pour \nresoudre l'equat10n (I) de defimr Ia charge ex \ndouble \nserie de Fourier : \n475 \n\n00 \noo m1tx n1ty \np(x,y) = L L Am,nsin-sinb \nm=l n=l a \nLes coefficients Am,n sont donnes par Ia formule : \na b \n4 J J m1tx n1ty \nAm, n = ab p (x,y) sinasinbdxdy \n0 0 \ny \nb 1-------., \n0 \na \nX \n(2) \n(3) \net Ia deformee devient : \nFig.B-Daile rectangulafre artlculee sur 4 c6tes. \n1 \nw (x, y) = --\n4\n-\n7tD \noo oo Am n m1tx n7ty \nmY;I n~l (m2 + .n2J2sina-sinT \na2 b2 \n(4) \nOn trouve alors pour les moments de flexion M\n1 \net M\n2\n, le moment de torsion C, Ies efforts \ntranchants \nV \n1 \net V \n2 \net les reactions d'appui R\n1\n, \nR\n2 \net R, Ies formules suivantes : \nm2 n2 \n-+V-\noo oo a2 b2 m7tx n7ty \nMl = 7t2 L LAm n 2 2 2sin--sinT \nm = 1 n = 1 ' ( :\n2 \n+ :\n2 \nJ a \nn2 m2 \n-+v-\n00 oo b2 a2 m1tx n7ty",
"metadata": {
"book_id": 34848,
"title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2",
"authors": "Unknown",
"project": "basic_structural",
"content_source": "ocr",
"content_length": 756676,
"chunk_index": 278,
"line_start": 8856,
"line_end": 8923,
"has_formulas": false,
"has_tables": false
}
}