chunk_17.json•1.55 kB
{
"id": "chunk_17",
"text": "= 5.37 ‘ Compute eccentricity e \ne = B/2 - \n \n 14.42/2 – 5.37 = 1.84 Feet less than L/6 recommended for eccentricity okay. \n\n252 \n \nStep 3 Compute bearing capacity of soil. For datas see page 134 reference textbook \n“Foundation Analysis and Design by Joseph Bowles”. The actual soil bearing pressure using \nbousiniques equation is q\nultimate\n = cN\nc\nd\nc\ni\nc\n + qN\nq\nd\nq\ni\nq\n + \n \n \n YBN\ny\nd\ny\ni\ny\n \nB’ = 14.42 – 2(1.84) = \n10.7 From tables Nc =35.5, Nq = 23.2 , Ny = 20.8, Ic = 0.42 , Iq = 0.44, Iy = 0.309. d\nc\n= 1.19, d\nq\n \n=1.13 and d\ny\n= 1.00 substituting values in the above equation we have \nq\nult\n = 0.4(35.5)(0.42)1.19 + 5(0.112)(23.2)(1.13)(0.44) + 0.5(0.112)(1.0)(10.7)(20.8)(0.309) = \n7.1 - 6.5 - + 3.9 = 17.5 q\na\n = 17.5/3 = 5.8 Ksf \n \nCompute actual soil pressure. Actual soil pressure is given as q = \n \n \n ( 1 \n \n \n ) \n= \n \n \n ( 1 \n \n \n = 3.02 (1 ) = 5.3 ksf maximum at toe q = 0.7 ksf \nmax at heel. \nStep 4 Compute base slab shear and bending moments toe and heel.",
"metadata": {
"book_id": 34880,
"title": "BASIC-STRUCTURAL-388457483-Retaining-Wall-Design-Analytical-and-Computer-Methods-By-Ben-David-CE",
"authors": "Ben David",
"project": "basic_structural",
"content_source": "ocr",
"content_length": 39295,
"chunk_index": 17,
"line_start": 714,
"line_end": 778,
"has_formulas": false,
"has_tables": false
}
}