Skip to main content
Glama

Calibre RAG MCP Server

by ispyridis
chunk_547.json1.43 kB
{ "id": "chunk_547", "text": "puis \ncr'P = crP + llcr'P = 1260 + 24,3 = 1284,3 < 1290 done e'p = cr'P I EP = 6,42 %o \n3.4.3. Allongement d l'ELU \nOn calcule le moment ultime du aux charges permanentes (travee isostatique de portee L) \net variables (en continuite de deux travees deportees. L): \nMu = 1,35 Mg + 1,5 Mq = 1,35 (g + 8t) L\n2 \nI 8 + 1,5 qt (3132) L\n2 \n= 1,35 (0,2773 + 1,73) X 5,74~ I 8 + 1,5 X 0,93 X 3132 X 5,742 = 15,47 kNm \n= 0,01547 MNm \nLa resistance de calcul du beton de table vaut <Jbu = 0,85 fc\n28 \nI 'Yb = 0,85 x 25 I 1,5 = \n14,17 MPa \nLa resistance de Ia partie exterieure de table de compression vaut : \nF,e = (b-h\n0\n) \nh\n0 \ncrbu = (0,62-0,04) X 0,04 X 14,17 = 0,329 MN = 329 kN \nLe bras \nde levier correspondant z\n1\ne = d-h\n0 \nI 2 = 0,2033-0,02 = 0,1833 m \net le moment resistant de Ia table exterieure M,e = Fre Zre = 329 X 0,1833 = 603 kNm \nLe moment \na reprendre par Ia nervure est donnee par Mn = Mu -M\n1\ne = 329 - 603 < 0 \nL'axe neutre est dans Ia table d'ou: \n1.1. = Mu I (b d2 crbu) = 0;0150471 (0,62 X 0,20331\n2", "metadata": { "book_id": 34848, "title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2", "authors": "Unknown", "project": "basic_structural", "content_source": "ocr", "content_length": 756676, "chunk_index": 547, "line_start": 19460, "line_end": 19495, "has_formulas": false, "has_tables": false } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ispyridis/calibre-rag-mcp-nodejs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server