chunk_279.json•1.5 kB
{
"id": "chunk_279",
"text": "2 \nJ a \nn2 m2 \n-+v-\n00 oo b2 a2 m1tx n7ty \n2 L L Am, n 2 2 2sin--sin- b \n7t m = 1 n = 1 (m n J a \n-+-\na2 b2 \n( 1-v) (mabnJ \n~ m1tx n1ty \n£...Am n 2 2 2 cos- a cos- b \n1 \nc = -2 I. \n1t m = l \n-+ -\nn = 1 ' (m n J \na2 b2 \n476 \nR = \nm \noo a m1tx n1ty \nLAm n 2 \n2 \ncos--sinT \nn = l • m n a \n-+-\na2 b2 \nh \nb m1tx n1ty \nLAm n 2 2 sin--cos b \nn=l • m n a \n-+-\na2 b2 \n~(m2 + (2-v) n2J \na a2 b2 nny \nL Am,n 2 2 2 sin-b \nn = l (~+~J \na2 b2 \n~ (:: + (2-v) :: J nnx \nL Am, n ------:2::------:::2----::2--sin-\nn = l (~ + ~J a \n2 ( \n1-v) \n7t2 \na2 b2 \nmn \nRemarque \nI. Les reactions d'appui R\n1 \net R\n2 \ntiennent compte des efforts tranchants V \n1 \net V \n2 \net du couple \nde torsion \nC (incidence iJC{iJx et iJC{iJy). La reaction R dans chaque angle correspond au \nnon-soulevement des angles. \n2. A partir \nde la solution de NAVIER, PIGEAUD a etabli des abaques qui permettent, pour \nun rapport donne des cotes de Ia dalle et un rapport donne des dimensions de la zone rec-\ntangulaire chargee qui a le meme centre que la dalle, de calculer le moment a mi-travee dans",
"metadata": {
"book_id": 34848,
"title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2",
"authors": "Unknown",
"project": "basic_structural",
"content_source": "ocr",
"content_length": 756676,
"chunk_index": 279,
"line_start": 8919,
"line_end": 8982,
"has_formulas": false,
"has_tables": false
}
}