Skip to main content
Glama

Calibre RAG MCP Server

by ispyridis
chunk_454.json1.44 kB
{ "id": "chunk_454", "text": "Avec cr = contrainte finale permanente dans les armatures de precontramte : \npm \ncr = cr -~CJ = 0 8 CJpo (= 1 265 MPa dans notre exemple) \npm po p • \nlei: \nA _ 0 ,028 X 0,1685 X 1,196 X 14,17 X 190 000 = \n3\n,\n35 \n> \n1 \n1 \n-\n4 X 93 X 10-\n6 \nX 1 444 X (l 444- 1 265 + 0,0035 X 190 000) \ndone 1..\n1 \n= 1 et de meme A.z = 1,552 > 1 done Az = 1 \nd'ou h\n0 \nf d = 0,1632 <A. ro = 1 X 0,1881 done \nM \n= 1 x4x93x 10-\n6\nx 1444 x0,1685 \nru [ 0,1881 X 1,196 ( 1,196-0,33) 0,027~] _ \n1\n-2 \nX 0,33 + 2 X 0,33 X 0,1685 -\n0\n•\n1065 \nMNm \nOr le moment ultime Mu vaut : \nMu = 1,35 M + 1,5 Mq = 1,35 x0,0317 + 1,5 ~ 0,~3375 = 0,0934 MNm < Mru = 0,1?65 OK. \nSi cette veri~cation approchee n'est pas satlsfatte, on procede alors au calcul. smvant I.e \nBPEL en prenant en compte Ia section exacte de beton (en I avec goussets arrondts aux dr01t \nde la jonction table-nervures). \n577 \n\nkj fcj-crbo Mrbt 0,86x50-6,78 0,01952 \nv BA = f. -C1 X 50-6 78 1 8 = 0,00909 MN \ncj bo • • \nYul(2) =Mer/ X+ VBA = 0,0738/1,8 + 0,00909 = 0,05 MN", "metadata": { "book_id": 34848, "title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2", "authors": "Unknown", "project": "basic_structural", "content_source": "ocr", "content_length": 756676, "chunk_index": 454, "line_start": 16063, "line_end": 16107, "has_formulas": false, "has_tables": false } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ispyridis/calibre-rag-mcp-nodejs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server