chunk_42.json•1.5 kB
{
"id": "chunk_42",
"text": "located at a distance Y=”;”Feet from top” \n \n2340 RESTORE 2270 \n2350 GOSUB 2400 \n2360 PRINT “Location Y for third area of steel is \nlocated at a distance Y=;Y;”Feet from top \nof wall” \n \n2370 PRINT Programmed by Bienvenido C. \nDavid a Civil/Structural Engineer on May3, \n1984 in Baguio City” \n \n2380 PRINT”Designed by Bienvenido C. David \n2390 STOP \n2400 REM A sub routine \n2410 REM This is the general cubic equation \nprogram no 1 finding the roots of a third \ndegree equation format is A1X\n3\n + B1X\n2\n + \nC1X + D1 – 0 \n \n2420 READ A1,B1,C1,D1 \n2440 P = C- B^2/3 \n2450 Q = D - B*C/3+2*B^3/27 \n2460 R = P^3/27+Q^2/4 \n2470 IF R<0 THEN 2530 \n2480 Z = -Q/2+R^0.5 \n2490 IF Z<0 THEN 2520 \n2500 ZA = Z^.33333 \n2510 GOTO 2630 \n2520 ZB = ABS(Z)^.33333 \n2530 ZA = -ZB \n\n273 \n \n2540 GOTO 2630 \n2550 O =ATN(ABS(R)^.5/(-Q/2))/3 \n2560 PI = 2.094395102 \n2570 ZC = ((-Q/2)^2-R)^.5 \n2580 ZA = (ZC)^.33333 \n2590 IF (-Q/2)>0 THEN 2620 \n2600 ZA = -ZA \n2610 XA = COS(O+2*PI)*(ZA-P/(3*ZA))-(B/3)",
"metadata": {
"book_id": 34880,
"title": "BASIC-STRUCTURAL-388457483-Retaining-Wall-Design-Analytical-and-Computer-Methods-By-Ben-David-CE",
"authors": "Ben David",
"project": "basic_structural",
"content_source": "ocr",
"content_length": 39295,
"chunk_index": 42,
"line_start": 1650,
"line_end": 1695,
"has_formulas": false,
"has_tables": false
}
}