chunk_289.json•1.63 kB
{
"id": "chunk_289",
"text": "w J \nR, = V\n1 \n+ oy = D ox\n3 \n+ (2-v) oxol = ~A. [1..\n2\nF-(2-v) F\" ] cosA.x \noC [ o\n3\nw o\n3\nw J \nn V D (2 ) = \"' ( (2-v) '~\n2\nF'-F\"' ) sinA.x \n~\n2 \n= \n2 \n+ ax = ol + -v ox\n2\noy ~ II. \n483 \n\nsoit pour x = 0 : \nR\n0 \n= LA. [A.\n2\nF-(2-v) F\" ], fonction dey \nm \npour x =a: \nR = -L(-l)mA.[A.\n2\nF-(2-v)F\"] ,fonctiondey \na m \npour y = b\n1\n: \nRb\n1 \n= L [ (2-v) A.\n2\nF' (b\n1\n) -\nF\"' (b\n1\n) ] \nsinh, fonction de x \nm \npour y = b\n2\n: \nRb\n2 \n= -L[(2-v)A.\n2\nF'(b\n2\n) \n-F\"' (b\n2\n) \n]sinA.x,fonctiondex \nm \nLes conditions aux extremites se traduisent:Rar: \n-\nBord libre en y = b\n1 \n: \nM\n2 \n= 0 ~ v A. F-F\" = 0 \nR\n2 \n= 0 ~ ( 2 -v) A.\n2 \nF' -F\"' = 0 \n-\nBord encastre en y = b\n1 \n: \nw = 0 ~ F = 0 \nro\n2 \n= 0 ~ F' = 0 \n-\nBord articule en y = b\n1 \n: \nw = 0 ~ F = 0 \nM\n2 \n= 0 ~ v A. \n2\nF-F\" = 0 soit F\" \nL'equation de Lagrange appliquee a I' equation (5) conduit a : \nA 4p _ 2A.2F\" + plV = Pm (y) \n2p \nd'ou les valeurs des coefficients a\n6 \n= -1.\n5\n= si m est pair, \n2 \na\n6 \n= -A. \n5 \na (p a+ 2p\n0\n) \nsi m est impair, \net a\n5 \n= 0 si m est pair, \n4pb \nll\n5 \n= -A. \n6\nab si m est impair. \n=0 \n4.2. Exemple numerique (Programme \n« DALLRECT »)",
"metadata": {
"book_id": 34848,
"title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2",
"authors": "Unknown",
"project": "basic_structural",
"content_source": "ocr",
"content_length": 756676,
"chunk_index": 289,
"line_start": 9482,
"line_end": 9608,
"has_formulas": false,
"has_tables": false
}
}