Skip to main content
Glama

Calibre RAG MCP Server

by ispyridis
chunk_488.json1.46 kB
{ "id": "chunk_488", "text": "0,333 0,125 \n0,333 1,000 \n1,000 \n0,1 \n0,125 0,003 10 \n0,117 0,357 0,103 0,357 \n1,132 1,000 \n0,2 0,124 0,004 \n5 \n0,108 0,385 0,086 0,385 \n1,255 \n1,000 \n0,3 \n0,120 \n0,030 \n4,34& \n0,106 0,394 0,082 0,394 \n1,289 \n1,000 \n0,4 \n0,110 \n0,091 2,5 \n0,092 0,455 0,064 0,455 \n1,436 1,000 \n0\n,5 \n0,096 \n0,181 2 0,083 0,500 0,056 0,500 1,477 \n1,000 \n0,6 \n0,082 0,295 \n1,667 0,075 0,556 0,051 0,556 1,474 \n1,000 \n0,7 0,068 0,434 \n1,429 0,067 0,625 0,047 \n0,625 \n1,424 1,000 \n0,8 \n0,056 \n0,597 \n1,25 0,058 0,714 \n0,044 0,714 \n1,327 1,000 \n0,9 \n0,046 0,785 \n1,111 0,050 0,833 0,042 0,833 \n1,183 1,000 \n1,0 \n0,042 1,000 1,000 0,042 1,000 \n0,042 1,000 1,000 1,000 \ntoujours ~ 1 \n11.3. Exemple 3 -Dalles triangulaires \n11.3.1. Triangle quelconque (Fig.91) \nLe po_in! d~ concours des bissectrices J est le centre du cercle inscrit dans le triangle ABC ; \nce \nqw stgrufie que les longueurs JH\n1\n, \nJH\n2 \net JH\n3 \nsont egales. II s'ensuit que Ies portees de \ncalcul des moments correspondant aux trois panneaux, \nde lignes d'appuis AB, BC et CA", "metadata": { "book_id": 34848, "title": "BASIC-STRUCTURAL-Henry-Thonier-Tome-2", "authors": "Unknown", "project": "basic_structural", "content_source": "ocr", "content_length": 756676, "chunk_index": 488, "line_start": 17245, "line_end": 17309, "has_formulas": false, "has_tables": false } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ispyridis/calibre-rag-mcp-nodejs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server