Skip to main content
Glama

umap

Visualize and reduce high-dimensional data into lower dimensions using uniform manifold approximation and projection (UMAP) for enhanced analysis, tailored for single-cell RNA sequencing workflows.

Instructions

Uniform Manifold Approximation and Projection (UMAP) for visualization

Input Schema

NameRequiredDescriptionDefault
aNoParameter controlling the embedding.
alphaNoInitial learning rate for the embedding optimization.
bNoParameter controlling the embedding.
gammaNoWeighting applied to negative samples.
init_posNoHow to initialize the low dimensional embedding.spectral
maxiterNoNumber of iterations (epochs) of the optimization.
methodNoImplementation to use ('umap' or 'rapids').umap
min_distNoMinimum distance between embedded points.
n_componentsNoNumber of dimensions of the embedding.
negative_sample_rateNoNumber of negative samples per positive sample.
neighbors_keyNoKey for neighbors settings in .uns.
random_stateNoRandom seed for reproducibility.
spreadNoScale of embedded points.

Input Schema (JSON Schema)

{ "description": "Input schema for the UMAP dimensionality reduction tool.", "properties": { "a": { "anyOf": [ { "exclusiveMinimum": 0, "type": "number" }, { "type": "null" } ], "default": null, "description": "Parameter controlling the embedding.", "title": "A" }, "alpha": { "default": 1, "description": "Initial learning rate for the embedding optimization.", "exclusiveMinimum": 0, "title": "Alpha", "type": "number" }, "b": { "anyOf": [ { "exclusiveMinimum": 0, "type": "number" }, { "type": "null" } ], "default": null, "description": "Parameter controlling the embedding.", "title": "B" }, "gamma": { "default": 1, "description": "Weighting applied to negative samples.", "exclusiveMinimum": 0, "title": "Gamma", "type": "number" }, "init_pos": { "default": "spectral", "description": "How to initialize the low dimensional embedding.", "title": "Init Pos", "type": "string" }, "maxiter": { "anyOf": [ { "exclusiveMinimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of iterations (epochs) of the optimization.", "title": "Maxiter" }, "method": { "default": "umap", "description": "Implementation to use ('umap' or 'rapids').", "title": "Method", "type": "string" }, "min_dist": { "default": 0.5, "description": "Minimum distance between embedded points.", "exclusiveMinimum": 0, "title": "Min Dist", "type": "number" }, "n_components": { "default": 2, "description": "Number of dimensions of the embedding.", "exclusiveMinimum": 0, "title": "N Components", "type": "integer" }, "negative_sample_rate": { "default": 5, "description": "Number of negative samples per positive sample.", "exclusiveMinimum": 0, "title": "Negative Sample Rate", "type": "integer" }, "neighbors_key": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Key for neighbors settings in .uns.", "title": "Neighbors Key" }, "random_state": { "default": 0, "description": "Random seed for reproducibility.", "title": "Random State", "type": "integer" }, "spread": { "default": 1, "description": "Scale of embedded points.", "exclusiveMinimum": 0, "title": "Spread", "type": "number" } }, "title": "UMAPModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server