Skip to main content
Glama

pl_pca

Create scatter plots in PCA coordinates to visualize single-cell RNA sequencing data patterns and relationships between samples.

Instructions

Scatter plot in PCA coordinates. default figure for PCA plot

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
colorNoKeys for annotations of observations/cells or variables/genes.
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
use_rawNoUse .raw attribute of adata for coloring with gene expression.
sort_orderNoFor continuous annotations used as color parameter, plot data points with higher values on top of others.
edgesNoShow edges between nodes.
edges_widthNoWidth of edges.
edges_colorNoColor of edges.grey
neighbors_keyNoWhere to look for neighbors connectivities.
arrowsNoShow arrows.
groupsNoRestrict to a few categories in categorical observation annotation.
componentsNoFor instance, ['1,2', '2,3']. To plot all available components use components='all'.
dimensionsNo0-indexed dimensions of the embedding to plot as integers. E.g. [(0, 1), (1, 2)].
layerNoName of the AnnData object layer that wants to be plotted.
projectionNoProjection of plot.2d
sizeNoPoint size. If None, is automatically computed.
frameonNoDraw a frame around the scatter plot.
add_outlineNoAdd outline to scatter plot points.
ncolsNoNumber of columns for multiple plots.
markerNoMatplotlib marker style for points..
annotate_var_explainedNoAnnotate the explained variance.

Implementation Reference

  • PCAModel defines the input schema (Pydantic model) for the pl_pca tool, inheriting from BaseEmbeddingModel.
    class PCAModel(BaseEmbeddingModel): """Input schema for the PCA plotting tool.""" annotate_var_explained: bool = Field( default=False, description="Annotate the explained variance." )
  • Creates and registers the MCP Tool object for pl_pca with name, description, and input schema.
    pl_pca_tool = types.Tool( name="pl_pca", description="Scatter plot in PCA coordinates. default figure for PCA plot", inputSchema=PCAModel.model_json_schema(), )
  • Dictionary mapping tool names like 'pl_pca' to their corresponding Scanpy plotting functions (sc.pl.pca). Used by the handler.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • Handler function that executes the pl_pca tool: retrieves adata, prepares kwargs from arguments, calls sc.pl.pca(adata, **kwargs), saves figure, logs operation, returns fig_path.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • MCP server call_tool handler dispatches to run_pl_func when tool name is in pl_tools (includes pl_pca).
    async def call_tool( name: str, arguments ): try: logger.info(f"Running {name} with {arguments}") if name in io_tools.keys(): res = run_io_func(ads, name, arguments) elif name in pp_tools.keys(): res = run_pp_func(ads, name, arguments) elif name in tl_tools.keys(): res = run_tl_func(ads, name, arguments) elif name in pl_tools.keys(): res = run_pl_func(ads, name, arguments) elif name in util_tools.keys(): res = run_util_func(ads, name, arguments) elif name in ccc_tools.keys(): res = run_ccc_func(ads.adata_dic[ads.active], name, arguments) output = str(res) if res is not None else str(ads.adata_dic[ads.active]) return [ types.TextContent( type="text", text=str({"output": output}) ) ] except Exception as error: logger.error(f"{name} with {error}") return [ types.TextContent( type="text", text=str({"Error": error}) ) ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server