Skip to main content
Glama

pl_pca_variance_ratio

Visualize PCA variance ratios to identify principal components that explain the most variance in single-cell RNA sequencing data.

Instructions

Plot the PCA variance ratio to visualize explained variance.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
n_pcsNoNumber of PCs to show.
logNoPlot on logarithmic scale.

Implementation Reference

  • Generic handler function that executes the tool logic for pl_pca_variance_ratio by calling sc.pl.pca_variance_ratio with validated arguments, saves the figure, and logs the operation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema (parameters like n_pcs, log) for the pl_pca_variance_ratio tool.
    class PCAVarianceRatioModel(BaseVisualizationModel): """Input schema for the pca_variance_ratio plotting tool.""" n_pcs: int = Field( default=30, description="Number of PCs to show.", gt=0 ) log: bool = Field( default=False, description="Plot on logarithmic scale." ) @field_validator('n_pcs') def validate_n_pcs(cls, v: int) -> int: """Validate n_pcs is positive""" if v <= 0: raise ValueError("n_pcs must be a positive integer") return v
  • Creates the MCP types.Tool instance for pl_pca_variance_ratio, specifying name, description, and input schema.
    pl_pca_variance_ratio = types.Tool( name="pl_pca_variance_ratio", description="Plot the PCA variance ratio to visualize explained variance.", inputSchema=PCAVarianceRatioModel.model_json_schema(), )
  • Maps the tool name 'pl_pca_variance_ratio' to the underlying scanpy function sc.pl.pca_variance_ratio for execution.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • In the MCP call_tool handler, checks if the tool name is in pl_tools and dispatches to run_pl_func.
    elif name in pl_tools.keys(): res = run_pl_func(ads, name, arguments)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server