Skip to main content
Glama

dendrogram

Creates hierarchical clustering dendrograms for single-cell RNA sequencing data to visualize relationships between cell groups based on gene expression patterns.

Instructions

Hierarchical clustering dendrogram

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
groupbyYesThe categorical observation annotation to use for grouping.
n_pcsNoUse this many PCs. If n_pcs==0 use .X if use_rep is None.
use_repNoUse the indicated representation. 'X' or any key for .obsm is valid.
var_namesNoList of var_names to use for computing the hierarchical clustering. If provided, use_rep and n_pcs are ignored.
use_rawNoOnly when var_names is not None. Use raw attribute of adata if present.
cor_methodNoCorrelation method to use: 'pearson', 'kendall', or 'spearman'.pearson
linkage_methodNoLinkage method to use for hierarchical clustering.complete
optimal_orderingNoReorders the linkage matrix so that the distance between successive leaves is minimal.
key_addedNoBy default, the dendrogram information is added to .uns[f'dendrogram_{groupby}'].

Implementation Reference

  • Handler function that executes the dendrogram tool. Retrieves sc.tl.dendrogram from tl_func mapping and calls it with parsed arguments on the active AnnData object.
    def run_tl_func(ads, func, arguments): adata = ads.adata_dic[ads.active] if func not in tl_func: raise ValueError(f"Unsupported function: {func}") run_func = tl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} try: res = run_func(adata, **kwargs) add_op_log(adata, run_func, kwargs) except Exception as e: logger.error(f"Error running function {func}: {e}") raise return
  • Mapping dictionary that associates the 'dendrogram' tool name with scanpy's sc.tl.dendrogram function.
    tl_func = { "tsne": sc.tl.tsne, "umap": sc.tl.umap, "draw_graph": sc.tl.draw_graph, "diffmap": sc.tl.diffmap, "embedding_density": sc.tl.embedding_density, "leiden": sc.tl.leiden, "louvain": sc.tl.louvain, "dendrogram": sc.tl.dendrogram, "dpt": sc.tl.dpt, "paga": sc.tl.paga, "ingest": sc.tl.ingest, "rank_genes_groups": sc.tl.rank_genes_groups, "filter_rank_genes_groups": sc.tl.filter_rank_genes_groups, "marker_gene_overlap": sc.tl.marker_gene_overlap, "score_genes": sc.tl.score_genes, "score_genes_cell_cycle": sc.tl.score_genes_cell_cycle, }
  • Pydantic model defining the input schema and validation for the dendrogram tool.
    class DendrogramModel(JSONParsingModel): """Input schema for the hierarchical clustering dendrogram tool.""" groupby: str = Field( ..., # Required field description="The categorical observation annotation to use for grouping." ) n_pcs: Optional[int] = Field( default=None, description="Use this many PCs. If n_pcs==0 use .X if use_rep is None.", ge=0 ) use_rep: Optional[str] = Field( default=None, description="Use the indicated representation. 'X' or any key for .obsm is valid." ) var_names: Optional[List[str]] = Field( default=None, description="List of var_names to use for computing the hierarchical clustering. If provided, use_rep and n_pcs are ignored." ) use_raw: Optional[bool] = Field( default=None, description="Only when var_names is not None. Use raw attribute of adata if present." ) cor_method: str = Field( default='pearson', description="Correlation method to use: 'pearson', 'kendall', or 'spearman'." ) linkage_method: str = Field( default='complete', description="Linkage method to use for hierarchical clustering." ) optimal_ordering: bool = Field( default=False, description="Reorders the linkage matrix so that the distance between successive leaves is minimal." ) key_added: Optional[str] = Field( default=None, description="By default, the dendrogram information is added to .uns[f'dendrogram_{groupby}']." ) @field_validator('cor_method') def validate_cor_method(cls, v: str) -> str: """Validate correlation method is supported""" valid_methods = ['pearson', 'kendall', 'spearman'] if v.lower() not in valid_methods: raise ValueError(f"cor_method must be one of {valid_methods}") return v.lower() @field_validator('linkage_method') def validate_linkage_method(cls, v: str) -> str: """Validate linkage method is supported""" valid_methods = ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward'] if v.lower() not in valid_methods: raise ValueError(f"linkage_method must be one of {valid_methods}") return v.lower() @field_validator('n_pcs') def validate_n_pcs(cls, v: Optional[int]) -> Optional[int]: """Validate n_pcs is non-negative""" if v is not None and v < 0: raise ValueError("n_pcs must be a non-negative integer") return v
  • Definition and registration of the MCP Tool object for 'dendrogram', referencing the input schema.
    # Add dendrogram tool dendrogram_tool = types.Tool( name="dendrogram", description="Hierarchical clustering dendrogram", inputSchema=DendrogramModel.model_json_schema(), )
  • Registration of the dendrogram_tool in the tl_tools dictionary, which is exposed via the MCP server.
    tl_tools = { "tsne": tsne_tool, "umap": umap_tool, "draw_graph": draw_graph_tool, "diffmap": diffmap_tool, "embedding_density": embedding_density_tool, "leiden": leiden_tool, "louvain": louvain_tool, "dendrogram": dendrogram_tool, "dpt": dpt_tool, "paga": paga_tool, "ingest": ingest_tool, "rank_genes_groups": rank_genes_groups_tool, "filter_rank_genes_groups": filter_rank_genes_groups_tool, "marker_gene_overlap": marker_gene_overlap_tool, "score_genes": score_genes_tool, "score_genes_cell_cycle": score_genes_cell_cycle_tool, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server