Skip to main content
Glama

combat

Correct batch effects in single-cell RNA sequencing data using a categorical annotation key and optional covariates, enabling accurate downstream analysis without manual coding.

Instructions

ComBat function for batch effect correction

Input Schema

NameRequiredDescriptionDefault
covariatesNoAdditional covariates besides the batch variable such as adjustment variables or biological condition.
keyNoKey to a categorical annotation from adata.obs that will be used for batch effect removal.batch

Input Schema (JSON Schema)

{ "description": "Input schema for the combat batch effect correction tool.", "properties": { "covariates": { "anyOf": [ { "items": { "type": "string" }, "type": "array" }, { "type": "null" } ], "default": null, "description": "Additional covariates besides the batch variable such as adjustment variables or biological condition.", "title": "Covariates" }, "key": { "default": "batch", "description": "Key to a categorical annotation from adata.obs that will be used for batch effect removal.", "title": "Key", "type": "string" } }, "title": "CombatModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server