Skip to main content
Glama

ccc_circle_plot

Visualize cell-cell communication networks with circular plots to analyze signaling interactions between cell types in single-cell RNA sequencing data.

Instructions

Visualize cell-cell communication network using a circular plot.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
uns_keyNoKey in adata.uns that contains the LIANA results.liana_res
groupbyNoKey to be used for grouping or clustering cells.
source_keyNoColumn name of the sender/source cell types in liana_res.source
target_keyNoColumn name of the receiver/target cell types in liana_res.target
score_keyNoColumn name of the score in liana_res. If None, the score is inferred from the method.
inverse_scoreNoWhether to invert the score. If True, the score will be -log10(score).
top_nNoTop N entities to plot.
orderbyNoIf top_n is not None, order the interactions by this column.
orderby_ascendingNoIf top_n is not None, specify how to order the interactions.
orderby_absoluteNoIf top_n is not None, whether to order by the absolute value of the orderby column.
source_labelsNoList of labels to use as source, the rest are filtered out.
target_labelsNoList of labels to use as target, the rest are filtered out.
ligand_complexNoList of ligand complexes to filter the interactions to be plotted.
receptor_complexNoList of receptor complexes to filter the interactions to be plotted.
pivot_modeNoThe mode of the pivot table: 'counts' for number of connections, 'mean' for mean of score values.counts
mask_modeNoThe mode of the mask: 'or' to include source or target, 'and' to include source and target.or
specificity_cutoffNospecificity or pval threshold for filtering results.
figure_sizeNoFigure x,y size.
edge_alphaNoThe transparency of the edges.
edge_arrow_sizeNoThe size of the arrow.
edge_width_scaleNoThe scale of the edge width.
node_alphaNoThe transparency of the nodes.
node_size_scaleNoThe scale of the node size.
node_label_offsetNoThe offset of the node label.
node_label_sizeNoThe size of the node label.
node_label_alphaNoThe transparency of the node label.

Implementation Reference

  • Handler function that implements the ccc_circle_plot tool logic: filters results by specificity cutoff, prepares parameters, and calls liana's circle_plot.
    def plot_circleplot(adata, **kwargs): pval = kwargs.pop("specificity_cutoff", 0.05) res_key = kwargs.get("uns_key", "liana_res") pval_col = adata.uns[res_key].columns[-1] kwargs["filter_fun"] = lambda x: x[pval_col] <= pval parameters = inspect.signature( li.pl.circle_plot).parameters kwargs = {k: kwargs.get(k) for k in parameters if k in kwargs} ax = li.pl.circle_plot(adata, **kwargs) return ax
  • Pydantic model defining the input schema and parameters for the ccc_circle_plot tool.
    class CirclePlotModel(JSONParsingModel): """Input schema for LIANA's circle_plot visualization for cell-cell communication networks.""" uns_key: Optional[str] = Field( default="liana_res", description="Key in adata.uns that contains the LIANA results." ) groupby: Optional[str] = Field( default=None, description="Key to be used for grouping or clustering cells." ) source_key: str = Field( default="source", description="Column name of the sender/source cell types in liana_res." ) target_key: str = Field( default="target", description="Column name of the receiver/target cell types in liana_res." ) score_key: Optional[str] = Field( default=None, description="Column name of the score in liana_res. If None, the score is inferred from the method." ) inverse_score: bool = Field( default=False, description="Whether to invert the score. If True, the score will be -log10(score)." ) top_n: Optional[int] = Field( default=None, description="Top N entities to plot." ) orderby: Optional[str] = Field( default=None, description="If top_n is not None, order the interactions by this column." ) orderby_ascending: Optional[bool] = Field( default=None, description="If top_n is not None, specify how to order the interactions." ) orderby_absolute: bool = Field( default=False, description="If top_n is not None, whether to order by the absolute value of the orderby column." ) source_labels: Optional[Union[List[str], str]] = Field( default=None, description="List of labels to use as source, the rest are filtered out." ) target_labels: Optional[Union[List[str], str]] = Field( default=None, description="List of labels to use as target, the rest are filtered out." ) ligand_complex: Optional[Union[List[str], str]] = Field( default=None, description="List of ligand complexes to filter the interactions to be plotted." ) receptor_complex: Optional[Union[List[str], str]] = Field( default=None, description="List of receptor complexes to filter the interactions to be plotted." ) pivot_mode: Literal["counts", "mean"] = Field( default="counts", description="The mode of the pivot table: 'counts' for number of connections, 'mean' for mean of score values." ) mask_mode: Literal["and", "or"] = Field( default="or", description="The mode of the mask: 'or' to include source or target, 'and' to include source and target." ) specificity_cutoff: float = Field( default=0.05, description="specificity or pval threshold for filtering results. " ) figure_size: Tuple[float, float] = Field( default=(5, 5), description="Figure x,y size." ) edge_alpha: float = Field( default=0.5, description="The transparency of the edges." ) edge_arrow_size: int = Field( default=10, description="The size of the arrow." ) edge_width_scale: Tuple[float, float] = Field( default=(1, 5), description="The scale of the edge width." ) node_alpha: float = Field( default=1.0, description="The transparency of the nodes." ) node_size_scale: Tuple[float, float] = Field( default=(100, 400), description="The scale of the node size." ) node_label_offset: Tuple[float, float] = Field( default=(0.1, -0.2), description="The offset of the node label." ) node_label_size: int = Field( default=8, description="The size of the node label." ) node_label_alpha: float = Field( default=0.7, description="The transparency of the node label." )
  • MCP Tool object registration with name, description, and schema for ccc_circle_plot.
    circle_plot_tool = types.Tool( name="ccc_circle_plot", description="Visualize cell-cell communication network using a circular plot.", inputSchema=CirclePlotModel.model_json_schema(), )
  • ccc_tools dictionary that maps tool name to Tool object, including ccc_circle_plot.
    ccc_tools = { "ls_ccc_method": ls_ccc_method_tool, "ccc_rank_aggregate": rank_aggregate_tool, "ccc_circle_plot": circle_plot_tool, "ccc_dot_plot": dot_plot_tool, "ccc": ccc_tool, }
  • In list_tools(), includes ccc_tools.values() to register ccc_circle_plot among available tools.
    tools = [ *io_tools.values(), *pp_tools.values(), *tl_tools.values(), *pl_tools.values(), *util_tools.values(), *ccc_tools.values(), ] return tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server