Skip to main content
Glama

tsne

Visualize high-dimensional single-cell data with t-distributed stochastic neighborhood embedding (t-SNE) to uncover patterns and clusters in an intuitive 2D or 3D space.

Instructions

t-distributed stochastic neighborhood embedding (t-SNE), for visualizating single-cell data

Input Schema

NameRequiredDescriptionDefault
early_exaggerationNoControls space between natural clusters in embedded space.
learning_rateNoLearning rate for optimization, typically between 100-1000.
metricNoDistance metric to use.euclidean
n_jobsNoNumber of jobs for parallel computation.
n_pcsNoNumber of PCs to use. If None, automatically determined.
perplexityNoRelated to number of nearest neighbors, typically between 5-50.
random_stateNoRandom seed for reproducibility.
use_fast_tsneNoWhether to use Multicore-tSNE implementation.
use_repNoKey for .obsm to use as representation.

Input Schema (JSON Schema)

{ "description": "Input schema for the t-SNE dimensionality reduction tool.", "properties": { "early_exaggeration": { "anyOf": [ { "type": "number" }, { "type": "integer" } ], "default": 12, "description": "Controls space between natural clusters in embedded space.", "gt": 0, "title": "Early Exaggeration" }, "learning_rate": { "anyOf": [ { "type": "number" }, { "type": "integer" } ], "default": 1000, "description": "Learning rate for optimization, typically between 100-1000.", "gt": 0, "title": "Learning Rate" }, "metric": { "default": "euclidean", "description": "Distance metric to use.", "title": "Metric", "type": "string" }, "n_jobs": { "anyOf": [ { "exclusiveMinimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of jobs for parallel computation.", "title": "N Jobs" }, "n_pcs": { "anyOf": [ { "minimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of PCs to use. If None, automatically determined.", "title": "N Pcs" }, "perplexity": { "anyOf": [ { "type": "number" }, { "type": "integer" } ], "default": 30, "description": "Related to number of nearest neighbors, typically between 5-50.", "gt": 0, "title": "Perplexity" }, "random_state": { "default": 0, "description": "Random seed for reproducibility.", "title": "Random State", "type": "integer" }, "use_fast_tsne": { "default": false, "description": "Whether to use Multicore-tSNE implementation.", "title": "Use Fast Tsne", "type": "boolean" }, "use_rep": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Key for .obsm to use as representation.", "title": "Use Rep" } }, "title": "TSNEModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server