Skip to main content
Glama

pl_tracksplot

Create compact plots to visualize gene expression patterns across cell groups in single-cell RNA sequencing data, enabling biological insights without coding.

Instructions

tracksplot,compact plot of expression of a list of genes..

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
var_namesNovar_names should be a valid subset of adata.var_names or a mapping where the key is used as label to group the values.
groupbyYesThe key of the observation grouping to consider.
use_rawNoUse raw attribute of adata if present.
logNoPlot on logarithmic axis.
dendrogramNoIf True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added.
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
var_group_positionsNoUse this parameter to highlight groups of var_names with brackets or color blocks between the given start and end positions.
var_group_labelsNoLabels for each of the var_group_positions that want to be highlighted.
layerNoName of the AnnData object layer that wants to be plotted.

Implementation Reference

  • Generic handler function that executes Scanpy plotting tools, including 'pl_tracksplot'. It maps the tool name to sc.pl.tracksplot and calls it with validated arguments.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema for the 'pl_tracksplot' tool. Inherits fields from BaseMatrixModel for var_names, groupby, etc.
    # 重构 TracksplotModel class TracksplotModel(BaseMatrixModel): """Input schema for the tracksplot plotting tool.""" # 所有需要的字段已经在 BaseMatrixModel 中定义
  • MCP Tool object registration for 'pl_tracksplot', specifying name, description, and input schema.
    pl_tracksplot = types.Tool( name="pl_tracksplot", description="tracksplot,compact plot of expression of a list of genes..", inputSchema=TracksplotModel.model_json_schema(), )
  • Mapping of 'pl_tracksplot' tool name to the underlying Scanpy function sc.pl.tracksplot used in the handler.
    "pl_tracksplot": sc.pl.tracksplot,
  • Server registration of tools via list_tools(), including pl_tools.values() which contains the 'pl_tracksplot' tool.
    @server.list_tools() async def list_tools() -> list[types.Tool]: if MODULE == "io": tools = io_tools.values() elif MODULE == "pp": tools = pp_tools.values() elif MODULE == "tl": tools = tl_tools.values() elif MODULE == "pl": tools = pl_tools.values() elif MODULE == "util": tools = util_tools.values() else: tools = [ *io_tools.values(), *pp_tools.values(), *tl_tools.values(), *pl_tools.values(), *util_tools.values(), *ccc_tools.values(), ] return tools
  • Main MCP tool call handler that dispatches 'pl_tracksplot' (in pl_tools) to run_pl_func.
    @server.call_tool() async def call_tool( name: str, arguments ): try: logger.info(f"Running {name} with {arguments}") if name in io_tools.keys(): res = run_io_func(ads, name, arguments) elif name in pp_tools.keys(): res = run_pp_func(ads, name, arguments) elif name in tl_tools.keys(): res = run_tl_func(ads, name, arguments) elif name in pl_tools.keys(): res = run_pl_func(ads, name, arguments) elif name in util_tools.keys(): res = run_util_func(ads, name, arguments) elif name in ccc_tools.keys(): res = run_ccc_func(ads.adata_dic[ads.active], name, arguments) output = str(res) if res is not None else str(ads.adata_dic[ads.active]) return [ types.TextContent( type="text", text=str({"output": output}) ) ] except Exception as error: logger.error(f"{name} with {error}") return [ types.TextContent( type="text", text=str({"Error": error}) ) ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server