Skip to main content
Glama

highly_variable_genes

Identify and annotate highly variable genes from single-cell RNA sequencing data, enabling focused analysis on key genes using configurable dispersion and expression cutoffs.

Instructions

Annotate highly variable genes

Input Schema

NameRequiredDescriptionDefault
batch_keyNoKey in adata.obs for batch information.
check_valuesNoCheck if counts are integers for seurat_v3 flavor.
flavorNoMethod for identifying highly variable genes.seurat
layerNoIf provided, use adata.layers[layer] for expression values.
max_dispNoMaximum dispersion cutoff for gene selection.
max_meanNoMaximum mean expression cutoff for gene selection.
min_dispNoMinimum dispersion cutoff for gene selection.
min_meanNoMinimum mean expression cutoff for gene selection.
n_binsNoNumber of bins for mean expression binning.
n_top_genesNoNumber of highly-variable genes to keep. Mandatory if `flavor='seurat_v3'
spanNoFraction of data used for loess model fit in seurat_v3.
subsetNoInplace subset to highly-variable genes if True.

Input Schema (JSON Schema)

{ "description": "Input schema for the highly_variable_genes preprocessing tool.", "properties": { "batch_key": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Key in adata.obs for batch information.", "title": "Batch Key" }, "check_values": { "default": true, "description": "Check if counts are integers for seurat_v3 flavor.", "title": "Check Values", "type": "boolean" }, "flavor": { "default": "seurat", "description": "Method for identifying highly variable genes.", "enum": [ "seurat", "cell_ranger", "seurat_v3", "seurat_v3_paper" ], "title": "Flavor", "type": "string" }, "layer": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "If provided, use adata.layers[layer] for expression values.", "title": "Layer" }, "max_disp": { "default": null, "description": "Maximum dispersion cutoff for gene selection.", "title": "Max Disp", "type": "number" }, "max_mean": { "default": 3, "description": "Maximum mean expression cutoff for gene selection.", "title": "Max Mean", "type": "number" }, "min_disp": { "default": 0.5, "description": "Minimum dispersion cutoff for gene selection.", "title": "Min Disp", "type": "number" }, "min_mean": { "default": 0.0125, "description": "Minimum mean expression cutoff for gene selection.", "title": "Min Mean", "type": "number" }, "n_bins": { "default": 20, "description": "Number of bins for mean expression binning.", "exclusiveMinimum": 0, "title": "N Bins", "type": "integer" }, "n_top_genes": { "anyOf": [ { "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of highly-variable genes to keep. Mandatory if `flavor='seurat_v3'", "title": "N Top Genes" }, "span": { "default": 0.3, "description": "Fraction of data used for loess model fit in seurat_v3.", "exclusiveMaximum": 1, "exclusiveMinimum": 0, "title": "Span", "type": "number" }, "subset": { "default": false, "description": "Inplace subset to highly-variable genes if True.", "title": "Subset", "type": "boolean" } }, "title": "HighlyVariableGenesModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server