Skip to main content
Glama

pl_embedding

Generate scatter plots for visualizing single-cell RNA sequencing embeddings like UMAP or t-SNE to analyze data patterns and clusters.

Instructions

Scatter plot for user specified embedding basis (e.g. umap, tsne, etc).

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
colorNoKeys for annotations of observations/cells or variables/genes.
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
use_rawNoUse .raw attribute of adata for coloring with gene expression.
sort_orderNoFor continuous annotations used as color parameter, plot data points with higher values on top of others.
edgesNoShow edges between nodes.
edges_widthNoWidth of edges.
edges_colorNoColor of edges.grey
neighbors_keyNoWhere to look for neighbors connectivities.
arrowsNoShow arrows.
groupsNoRestrict to a few categories in categorical observation annotation.
componentsNoFor instance, ['1,2', '2,3']. To plot all available components use components='all'.
dimensionsNo0-indexed dimensions of the embedding to plot as integers. E.g. [(0, 1), (1, 2)].
layerNoName of the AnnData object layer that wants to be plotted.
projectionNoProjection of plot.2d
sizeNoPoint size. If None, is automatically computed.
frameonNoDraw a frame around the scatter plot.
add_outlineNoAdd outline to scatter plot points.
ncolsNoNumber of columns for multiple plots.
markerNoMatplotlib marker style for points..
basisYesName of the obsm basis to use.
mask_obsNoA boolean array or a string mask expression to subset observations.
arrows_kwdsNoPassed to matplotlib's quiver function for drawing arrows.
scale_factorNoScale factor for the plot.
cmapNoColor map to use for continuous variables. Overrides color_map.
na_colorNoColor to use for null or masked values.lightgray
na_in_legendNoWhether to include null values in the legend.
outline_widthNoWidth of the outline for highlighted points.
outline_colorNoColor of the outline for highlighted points.
colorbar_locNoLocation of the colorbar.right
hspaceNoHeight space between panels.
wspaceNoWidth space between panels.
titleNoTitle for the plot.

Implementation Reference

  • The run_pl_func executes the tool logic for pl_embedding by dispatching to sc.pl.embedding (via pl_func mapping) with validated arguments and handles figure saving and logging.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema for the pl_embedding tool, including basis, color, projection, and other scanpy.pl.embedding parameters.
    class EmbeddingModel(BaseEmbeddingModel): """Input schema for the embedding plotting tool.""" basis: str = Field( ..., # Required field description="Name of the obsm basis to use." ) mask_obs: Optional[str] = Field( default=None, description="A boolean array or a string mask expression to subset observations." ) arrows_kwds: Optional[dict] = Field( default=None, description="Passed to matplotlib's quiver function for drawing arrows." ) scale_factor: Optional[float] = Field( default=None, description="Scale factor for the plot." ) cmap: Optional[str] = Field( default=None, description="Color map to use for continuous variables. Overrides color_map." ) na_color: str = Field( default="lightgray", description="Color to use for null or masked values." ) na_in_legend: bool = Field( default=True, description="Whether to include null values in the legend." ) outline_width: Tuple[float, float] = Field( default=(0.3, 0.05), description="Width of the outline for highlighted points." ) outline_color: Tuple[str, str] = Field( default=("black", "white"), description="Color of the outline for highlighted points." ) colorbar_loc: Optional[str] = Field( default="right", description="Location of the colorbar." ) hspace: float = Field( default=0.25, description="Height space between panels." ) wspace: Optional[float] = Field( default=None, description="Width space between panels." ) title: Optional[Union[str, List[str]]] = Field( default=None, description="Title for the plot." )
  • Creates the MCP Tool object for pl_embedding with name, description, and input schema.
    pl_embedding = types.Tool( name="pl_embedding", description="Scatter plot for user specified embedding basis (e.g. umap, tsne, etc).", inputSchema=EmbeddingModel.model_json_schema(), )
  • Adds the pl_embedding tool to the pl_tools dictionary, which is used by the server to list and dispatch tools.
    pl_tools = { "pl_pca": pl_pca_tool, "pl_embedding": pl_embedding, # Add the new embedding tool # "diffmap": diffmap, "pl_violin": pl_violin, "pl_stacked_violin": pl_stacked_violin, "pl_heatmap": pl_heatmap, "pl_dotplot": pl_dotplot, "pl_matrixplot": pl_matrixplot, "pl_tracksplot": pl_tracksplot, "pl_scatter": pl_scatter, # "embedding_density": embedding_density, # "spatial": spatial, # "rank_genes_groups": rank_genes_groups, "pl_rank_genes_groups_dotplot": pl_rank_genes_groups_dotplot, # Add tool mapping # "pl_clustermap": pl_clustermap, "pl_highly_variable_genes": pl_highly_variable_genes, "pl_pca_variance_ratio": pl_pca_variance_ratio, }
  • Maps 'pl_embedding' to the underlying scanpy function sc.pl.embedding used by the handler.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server