Skip to main content
Glama

pl_rank_genes_groups_dotplot

Visualize ranked differentially expressed genes (DEGs) using dot plots to analyze gene expression patterns across groups. Configure color maps, gene lists, and group comparisons for detailed insights in single-cell RNA sequencing studies.

Instructions

Plot ranking of genes(DEGs) using dotplot visualization. Defualt plot DEGs for rank_genes_groups tool

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
color_mapNoColor map to use for continuous variables.
dendrogramNoIf True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added.
figsizeNoFigure size. Format is (width, height).
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
groupbyYesThe key of the observation grouping to consider.
groupsNoThe groups for which to show the gene ranking.
keyNoKey used to store the ranking results in adata.uns.
layerNoName of the AnnData object layer that wants to be plotted.
legend_fontoutlineNoLine width of the legend font outline in pt.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
logNoPlot on logarithmic axis.
min_logfoldchangeNoValue to filter genes in groups if their logfoldchange is less than the min_logfoldchange.
n_genesNoNumber of genes to show. This can be a negative number to show down regulated genes. Ignored if var_names is passed.
paletteNoColors to use for plotting categorical annotation groups.
use_rawNoUse raw attribute of adata if present.
values_to_plotNoInstead of the mean gene value, plot the values computed by sc.rank_genes_groups.
var_group_labelsNoLabels for each of the var_group_positions that want to be highlighted.
var_group_positionsNoUse this parameter to highlight groups of var_names with brackets or color blocks between the given start and end positions.
var_namesNoGenes to plot. Sometimes is useful to pass a specific list of var names (e.g. genes) to check their fold changes or p-values
vcenterNoThe value representing the center of the color scale.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.

Implementation Reference

  • Handler function that executes the tool logic by dispatching to scanpy's sc.pl.rank_genes_groups_dotplot via pl_func mapping, processes arguments, generates the plot, saves figure, and logs the operation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema (parameters and validation) for the pl_rank_genes_groups_dotplot tool.
    class RankGenesGroupsDotplotModel(BaseMatrixModel): """Input schema for the rank_genes_groups_dotplot plotting tool.""" groups: Optional[Union[str, List[str]]] = Field( default=None, description="The groups for which to show the gene ranking." ) n_genes: Optional[int] = Field( default=None, description="Number of genes to show. This can be a negative number to show down regulated genes. Ignored if var_names is passed." ) values_to_plot: Optional[Literal['scores', 'logfoldchanges', 'pvals', 'pvals_adj', 'log10_pvals', 'log10_pvals_adj']] = Field( default=None, description="Instead of the mean gene value, plot the values computed by sc.rank_genes_groups." ) min_logfoldchange: Optional[float] = Field( default=None, description="Value to filter genes in groups if their logfoldchange is less than the min_logfoldchange." ) key: Optional[str] = Field( default=None, description="Key used to store the ranking results in adata.uns." ) var_names: Union[List[str], Mapping[str, List[str]]] = Field( default=None, description="Genes to plot. Sometimes is useful to pass a specific list of var names (e.g. genes) to check their fold changes or p-values" ) @field_validator('n_genes') def validate_n_genes(cls, v: Optional[int]) -> Optional[int]: """Validate n_genes""" # n_genes can be positive or negative, so no validation needed return v
  • pl_tools dictionary registers the Tool instances (schemas) for pl_ tools, including pl_rank_genes_groups_dotplot, exposed via tool/__init__.py for MCP server registration.
    pl_tools = { "pl_pca": pl_pca_tool, "pl_embedding": pl_embedding, # Add the new embedding tool # "diffmap": diffmap, "pl_violin": pl_violin, "pl_stacked_violin": pl_stacked_violin, "pl_heatmap": pl_heatmap, "pl_dotplot": pl_dotplot, "pl_matrixplot": pl_matrixplot, "pl_tracksplot": pl_tracksplot, "pl_scatter": pl_scatter, # "embedding_density": embedding_density, # "spatial": spatial, # "rank_genes_groups": rank_genes_groups, "pl_rank_genes_groups_dotplot": pl_rank_genes_groups_dotplot, # Add tool mapping # "pl_clustermap": pl_clustermap, "pl_highly_variable_genes": pl_highly_variable_genes, "pl_pca_variance_ratio": pl_pca_variance_ratio, }
  • pl_func dictionary maps tool names to the corresponding scanpy plotting functions for dispatch in the handler.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • Utility function set_fig_path with special case for pl_rank_genes_groups_dotplot to handle figure file path and renaming.
    def set_fig_path(func, **kwargs): fig_dir = Path(os.getcwd()) / "figures" if func == "pl_rank_genes_groups_dotplot": old_path = fig_dir / 'dotplot_.png' fig_path = fig_dir / f"{func[3:]}.png" elif func in ["pl_scatter", "pl_embedding"]: if "basis" in kwargs and kwargs['basis'] is not None: old_path = fig_dir / f"{kwargs['basis']}.png" fig_path = fig_dir / f"{func[3:]}_{kwargs['basis']}.png" else: old_path = fig_dir / f"{func[3:]}_.png" fig_path = fig_dir / f"{func[3:]}.png" try: os.rename(old_path, fig_path) except FileNotFoundError: print(f"The file {old_path} does not exist") except FileExistsError: print(f"The file {fig_path} already exists") except PermissionError: print("You don't have permission to rename this file") if os.environ.get("SCMCP_TRANSPORT") == "stdio": return fig_path else: host = os.environ.get("SCMCP_HOST") port = os.environ.get("SCMCP_PORT") fig_path = f"http://{host}:{port}/figures/{Path(fig_path).name}" return fig_path

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server