Skip to main content
Glama

pl_scatter

Plot scatter plots of two variables for single-cell RNA sequencing data visualization, enabling analysis of relationships between observations or variables.

Instructions

Plot a scatter plot of two variables, Scatter plot along observations or variables axes.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
xNox coordinate.
yNoy coordinate.
colorNoKeys for annotations of observations/cells or variables/genes, or a hex color specification.
use_rawNoWhether to use raw attribute of adata. Defaults to True if .raw is present.
layersNoUse the layers attribute of adata if present: specify the layer for x, y and color.
basisNoBasis to use for embedding.
sort_orderNoFor continuous annotations used as color parameter, plot data points with higher values on top of others.
alphaNoAlpha value for the plot.
groupsNoRestrict to a few categories in categorical observation annotation.
componentsNoFor instance, ['1,2', '2,3']. To plot all available components use components='all'.
projectionNoProjection of plot.2d
right_marginNoAdjust the width of the right margin.
left_marginNoAdjust the width of the left margin.

Implementation Reference

  • Handler function that executes pl_scatter by mapping to sc.pl.scatter, processing arguments, calling the function, saving figure, and logging.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema for the pl_scatter tool, including fields like x, y, color, alpha, etc., inherited from BaseScatterModel.
    class EnhancedScatterModel(BaseScatterModel): """Input schema for the enhanced scatter plotting tool.""" sort_order: bool = Field( default=True, description="For continuous annotations used as color parameter, plot data points with higher values on top of others." ) alpha: Optional[float] = Field( default=None, description="Alpha value for the plot.", ge=0, le=1 ) groups: Optional[Union[str, List[str]]] = Field( default=None, description="Restrict to a few categories in categorical observation annotation." ) components: Optional[Union[str, List[str]]] = Field( default=None, description="For instance, ['1,2', '2,3']. To plot all available components use components='all'." ) projection: Literal['2d', '3d'] = Field( default='2d', description="Projection of plot." ) right_margin: Optional[float] = Field( default=None, description="Adjust the width of the right margin." ) left_margin: Optional[float] = Field( default=None, description="Adjust the width of the left margin." ) @field_validator('alpha') def validate_alpha(cls, v: Optional[float]) -> Optional[float]: """Validate alpha is between 0 and 1""" if v is not None and (v < 0 or v > 1): raise ValueError("alpha must be between 0 and 1") return v
  • Creates and registers the pl_scatter Tool object with MCP types.Tool, specifying name, description, and input schema.
    pl_scatter = types.Tool( name="pl_scatter", description="Plot a scatter plot of two variables, Scatter plot along observations or variables axes.", inputSchema=EnhancedScatterModel.model_json_schema(), )
  • In list_tools MCP endpoint, includes pl_tools.values() (containing pl_scatter) when listing available tools.
    if MODULE == "io": tools = io_tools.values() elif MODULE == "pp": tools = pp_tools.values() elif MODULE == "tl": tools = tl_tools.values() elif MODULE == "pl": tools = pl_tools.values() elif MODULE == "util": tools = util_tools.values() else: tools = [ *io_tools.values(), *pp_tools.values(), *tl_tools.values(), *pl_tools.values(), *util_tools.values(), *ccc_tools.values(), ] return tools
  • Mapping dictionary pl_func that associates 'pl_scatter' with scanpy's sc.pl.scatter function, used by the handler.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server