Skip to main content
Glama

pca

Perform principal component analysis on single-cell RNA sequencing data to reduce dimensionality, extract key patterns, and enable efficient visualization and analysis.

Instructions

Principal component analysis

Input Schema

NameRequiredDescriptionDefault
chunk_sizeNoNumber of observations to include in each chunk.
chunkedNoIf True, perform an incremental PCA on segments.
dtypeNoNumpy data type string for the result.float32
layerNoIf provided, which element of layers to use for PCA.
mask_varNoBoolean mask or string referring to var column for subsetting genes.
n_compsNoNumber of principal components to compute. Defaults to 50 or 1 - minimum dimension size.
svd_solverNoSVD solver to use.
zero_centerNoIf True, compute standard PCA from covariance matrix.

Input Schema (JSON Schema)

{ "description": "Input schema for the PCA preprocessing tool.", "properties": { "chunk_size": { "anyOf": [ { "exclusiveMinimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of observations to include in each chunk.", "title": "Chunk Size" }, "chunked": { "default": false, "description": "If True, perform an incremental PCA on segments.", "title": "Chunked", "type": "boolean" }, "dtype": { "default": "float32", "description": "Numpy data type string for the result.", "title": "Dtype", "type": "string" }, "layer": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "If provided, which element of layers to use for PCA.", "title": "Layer" }, "mask_var": { "anyOf": [ { "type": "string" }, { "type": "boolean" }, { "type": "null" } ], "default": null, "description": "Boolean mask or string referring to var column for subsetting genes.", "title": "Mask Var" }, "n_comps": { "anyOf": [ { "exclusiveMinimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of principal components to compute. Defaults to 50 or 1 - minimum dimension size.", "title": "N Comps" }, "svd_solver": { "anyOf": [ { "enum": [ "arpack", "randomized", "auto", "lobpcg", "tsqr" ], "type": "string" }, { "type": "null" } ], "default": null, "description": "SVD solver to use.", "title": "Svd Solver" }, "zero_center": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": true, "description": "If True, compute standard PCA from covariance matrix.", "title": "Zero Center" } }, "title": "PCAModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server