pca
Perform principal component analysis on single-cell RNA sequencing data to reduce dimensionality, extract key patterns, and enable efficient visualization and analysis.
Instructions
Principal component analysis
Input Schema
Name | Required | Description | Default |
---|---|---|---|
chunk_size | No | Number of observations to include in each chunk. | |
chunked | No | If True, perform an incremental PCA on segments. | |
dtype | No | Numpy data type string for the result. | float32 |
layer | No | If provided, which element of layers to use for PCA. | |
mask_var | No | Boolean mask or string referring to var column for subsetting genes. | |
n_comps | No | Number of principal components to compute. Defaults to 50 or 1 - minimum dimension size. | |
svd_solver | No | SVD solver to use. | |
zero_center | No | If True, compute standard PCA from covariance matrix. |