Skip to main content
Glama

pl_stacked_violin

Visualize single-cell RNA sequencing data distributions by creating compact stacked violin plots to compare gene expression across cell groups.

Instructions

Plot stacked violin plots. Makes a compact image composed of individual violin plots stacked on top of each other.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
groupbyNoThe key of the observation grouping to consider.
logNoPlot on logarithmic axis.
use_rawNoUse raw attribute of adata if present.
var_namesNovar_names should be a valid subset of adata.var_names.
layerNoName of the AnnData object layer that wants to be plotted.
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
stripplotNoAdd a stripplot on top of the violin plot.
jitterNoAdd jitter to the stripplot (only when stripplot is True).
sizeNoSize of the jitter points.
orderNoOrder in which to show the categories.
scaleNoThe method used to scale the width of each violin.width
swap_axesNoSwap axes such that observations are on the x-axis.

Implementation Reference

  • Generic handler function that executes all 'pl_' tools, including 'pl_stacked_violin', by mapping the tool name to sc.pl.stacked_violin and calling it with input arguments after validation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema and validation for the pl_stacked_violin tool.
    class StackedViolinModel(BaseStatPlotModel): """Input schema for the stacked_violin plotting tool.""" stripplot: bool = Field( default=True, description="Add a stripplot on top of the violin plot." ) jitter: Union[float, bool] = Field( default=True, description="Add jitter to the stripplot (only when stripplot is True)." ) size: int = Field( default=1, description="Size of the jitter points.", gt=0 ) order: Optional[List[str]] = Field( default=None, description="Order in which to show the categories." ) scale: Literal['area', 'count', 'width'] = Field( default='width', description="The method used to scale the width of each violin." ) swap_axes: bool = Field( default=False, description="Swap axes such that observations are on the x-axis." ) @field_validator('size') def validate_size(cls, v: int) -> int: """Validate size is positive""" if v <= 0: raise ValueError("size must be a positive integer") return v
  • Creates and configures the MCP Tool object for 'pl_stacked_violin' with schema reference.
    pl_stacked_violin = types.Tool( name="pl_stacked_violin", description="Plot stacked violin plots. Makes a compact image composed of individual violin plots stacked on top of each other.", inputSchema=StackedViolinModel.model_json_schema(), )
  • Maps the tool name 'pl_stacked_violin' to the underlying scanpy function sc.pl.stacked_violin for execution.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • Registers the pl_stacked_violin Tool object in the pl_tools dictionary, which is exposed via server.list_tools().
    pl_tools = { "pl_pca": pl_pca_tool, "pl_embedding": pl_embedding, # Add the new embedding tool # "diffmap": diffmap, "pl_violin": pl_violin, "pl_stacked_violin": pl_stacked_violin, "pl_heatmap": pl_heatmap, "pl_dotplot": pl_dotplot, "pl_matrixplot": pl_matrixplot, "pl_tracksplot": pl_tracksplot, "pl_scatter": pl_scatter, # "embedding_density": embedding_density, # "spatial": spatial, # "rank_genes_groups": rank_genes_groups, "pl_rank_genes_groups_dotplot": pl_rank_genes_groups_dotplot, # Add tool mapping # "pl_clustermap": pl_clustermap, "pl_highly_variable_genes": pl_highly_variable_genes, "pl_pca_variance_ratio": pl_pca_variance_ratio, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server