Skip to main content
Glama

pl_dotplot

Generate dot plots to visualize gene expression values across groups, enabling insights into single-cell RNA sequencing data through customizable visual parameters.

Instructions

Plot dot plot of expression values per gene for each group.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
color_mapNoColor map to use for continuous variables.
colorbar_titleNoTitle for the color bar. New line character (\n) can be used.Mean expression in group
dendrogramNoIf True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added.
dot_maxNoThe maximum size of the dots.
dot_minNoThe minimum size of the dots.
expression_cutoffNoExpression cutoff that is used for binarizing the gene expression.
figsizeNoFigure size. Format is (width, height).
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
groupbyYesThe key of the observation grouping to consider.
layerNoName of the AnnData object layer that wants to be plotted.
legend_fontoutlineNoLine width of the legend font outline in pt.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
logNoPlot on logarithmic axis.
mean_only_expressedNoIf True, gene expression is averaged only over the cells expressing the given genes.
paletteNoColors to use for plotting categorical annotation groups.
size_titleNoTitle for the size legend. New line character (\n) can be used.Fraction of cells in group (%)
smallest_dotNoThe smallest dot size.
standard_scaleNoWhether or not to standardize that dimension between 0 and 1.
swap_axesNoBy default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names.
use_rawNoUse raw attribute of adata if present.
var_group_labelsNoLabels for each of the var_group_positions that want to be highlighted.
var_group_positionsNoUse this parameter to highlight groups of var_names with brackets or color blocks between the given start and end positions.
var_group_rotationNoLabel rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.
var_namesNovar_names should be a valid subset of adata.var_names or a mapping where the key is used as label to group the values.
vcenterNoThe value representing the center of the color scale.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.

Implementation Reference

  • Generic handler that implements the pl_dotplot tool (and others). Looks up sc.pl.dotplot from pl_func dict based on func='pl_dotplot', calls it on active adata with inspected and filtered kwargs, saves the figure, logs the operation, returns fig_path.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema (parameters and validation) for the pl_dotplot tool.
    class DotplotModel(BaseMatrixModel): """Input schema for the dotplot plotting tool.""" expression_cutoff: float = Field( default=0.0, description="Expression cutoff that is used for binarizing the gene expression." ) mean_only_expressed: bool = Field( default=False, description="If True, gene expression is averaged only over the cells expressing the given genes." ) standard_scale: Optional[Literal['var', 'group']] = Field( default=None, description="Whether or not to standardize that dimension between 0 and 1." ) swap_axes: bool = Field( default=False, description="By default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names." ) dot_max: Optional[float] = Field( default=None, description="The maximum size of the dots." ) dot_min: Optional[float] = Field( default=None, description="The minimum size of the dots." ) smallest_dot: Optional[float] = Field( default=None, description="The smallest dot size." ) var_group_rotation: Optional[float] = Field( default=None, description="Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees." ) colorbar_title: Optional[str] = Field( default='Mean expression\nin group', description="Title for the color bar. New line character (\\n) can be used." ) size_title: Optional[str] = Field( default='Fraction of cells\nin group (%)', description="Title for the size legend. New line character (\\n) can be used." )
  • Registers the pl_dotplot tool using mcp.types.Tool with name and input schema reference.
    pl_dotplot = types.Tool( name="pl_dotplot", description="Plot dot plot of expression values per gene for each group.", inputSchema=DotplotModel.model_json_schema(), )
  • Adds the pl_dotplot tool to the pl_tools dictionary used for tool registration in the package.
    "pl_dotplot": pl_dotplot,
  • Maps the tool name 'pl_dotplot' to the underlying scanpy function sc.pl.dotplot, used by the handler.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server