Skip to main content
Glama

rank_genes_groups

Identify and rank differentially expressed genes across groups for single-cell RNA sequencing analysis, enabling targeted insights into gene expression patterns and group characterization.

Instructions

Rank genes for characterizing groups, perform differentially expressison analysis

Input Schema

NameRequiredDescriptionDefault
corr_methodNop-value correction method. Used only for 't-test', 't-test_overestim_var', and 'wilcoxon'.benjamini-hochberg
groupbyYesThe key of the observations grouping to consider.
groupsNoSubset of groups to which comparison shall be restricted, or 'all' for all groups.all
key_addedNoThe key in adata.uns information is saved to.
layerNoKey from adata.layers whose value will be used to perform tests on.
mask_varNoSelect subset of genes to use in statistical tests.
methodNoMethod for differential expression analysis. Default is 't-test'.
n_genesNoThe number of genes that appear in the returned tables. Defaults to all genes.
ptsNoCompute the fraction of cells expressing the genes.
rankby_absNoRank genes by the absolute value of the score, not by the score.
referenceNoIf 'rest', compare each group to the union of the rest of the group. If a group identifier, compare with respect to this group.rest
tie_correctNoUse tie correction for 'wilcoxon' scores. Used only for 'wilcoxon'.
use_rawNoUse raw attribute of adata if present.

Input Schema (JSON Schema)

{ "description": "Input schema for the rank_genes_groups tool.", "properties": { "corr_method": { "default": "benjamini-hochberg", "description": "p-value correction method. Used only for 't-test', 't-test_overestim_var', and 'wilcoxon'.", "title": "Corr Method", "type": "string" }, "groupby": { "description": "The key of the observations grouping to consider.", "title": "Groupby", "type": "string" }, "groups": { "anyOf": [ { "const": "all", "type": "string" }, { "items": { "type": "string" }, "type": "array" } ], "default": "all", "description": "Subset of groups to which comparison shall be restricted, or 'all' for all groups.", "title": "Groups" }, "key_added": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "The key in adata.uns information is saved to.", "title": "Key Added" }, "layer": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Key from adata.layers whose value will be used to perform tests on.", "title": "Layer" }, "mask_var": { "anyOf": [ { "type": "string" }, { "items": { "type": "boolean" }, "type": "array" }, { "type": "null" } ], "default": null, "description": "Select subset of genes to use in statistical tests.", "title": "Mask Var" }, "method": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Method for differential expression analysis. Default is 't-test'.", "title": "Method" }, "n_genes": { "anyOf": [ { "exclusiveMinimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "The number of genes that appear in the returned tables. Defaults to all genes.", "title": "N Genes" }, "pts": { "default": false, "description": "Compute the fraction of cells expressing the genes.", "title": "Pts", "type": "boolean" }, "rankby_abs": { "default": false, "description": "Rank genes by the absolute value of the score, not by the score.", "title": "Rankby Abs", "type": "boolean" }, "reference": { "default": "rest", "description": "If 'rest', compare each group to the union of the rest of the group. If a group identifier, compare with respect to this group.", "title": "Reference", "type": "string" }, "tie_correct": { "default": false, "description": "Use tie correction for 'wilcoxon' scores. Used only for 'wilcoxon'.", "title": "Tie Correct", "type": "boolean" }, "use_raw": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "description": "Use raw attribute of adata if present.", "title": "Use Raw" } }, "required": [ "groupby" ], "title": "RankGenesGroupsModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server