Skip to main content
Glama

pl_highly_variable_genes

Visualize highly variable genes in single-cell RNA sequencing data by plotting dispersions or normalized variance versus means. Customize plots with color maps, palettes, and logarithmic scaling.

Instructions

plot highly variable genes; Plot dispersions or normalized variance versus means for genes.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
color_mapNoColor map to use for continuous variables.
figsizeNoFigure size. Format is (width, height).
highly_variable_genesNoWhether to plot highly variable genes or all genes.
legend_fontoutlineNoLine width of the legend font outline in pt.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
logNoPlot on logarithmic axes.
paletteNoColors to use for plotting categorical annotation groups.
vcenterNoThe value representing the center of the color scale.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.

Implementation Reference

  • Generic handler function that dispatches execution for the 'pl_highly_variable_genes' tool (and other pl_ tools) by retrieving sc.pl.highly_variable_genes from pl_func, calling it with validated arguments on the active AnnData object, saving the figure to a path, and logging the operation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model class defining the input parameters and validation for the pl_highly_variable_genes tool.
    class HighlyVariableGenesModel(BaseVisualizationModel): """Input schema for the highly_variable_genes plotting tool.""" log: bool = Field( default=False, description="Plot on logarithmic axes." ) highly_variable_genes: bool = Field( default=True, description="Whether to plot highly variable genes or all genes." )
  • Registers the pl_highly_variable_genes tool by creating an MCP types.Tool instance with its name, description, and input schema.
    pl_highly_variable_genes = types.Tool( name="pl_highly_variable_genes", description="plot highly variable genes; Plot dispersions or normalized variance versus means for genes.", inputSchema=HighlyVariableGenesModel.model_json_schema(), )
  • Helper dictionary mapping 'pl_highly_variable_genes' tool name to the core scanpy implementation sc.pl.highly_variable_genes, used by the handler to execute the tool.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • Registers the pl_highly_variable_genes Tool object in the pl_tools dictionary, likely used by the MCP server to expose the tool.
    pl_tools = { "pl_pca": pl_pca_tool, "pl_embedding": pl_embedding, # Add the new embedding tool # "diffmap": diffmap, "pl_violin": pl_violin, "pl_stacked_violin": pl_stacked_violin, "pl_heatmap": pl_heatmap, "pl_dotplot": pl_dotplot, "pl_matrixplot": pl_matrixplot, "pl_tracksplot": pl_tracksplot, "pl_scatter": pl_scatter, # "embedding_density": embedding_density, # "spatial": spatial, # "rank_genes_groups": rank_genes_groups, "pl_rank_genes_groups_dotplot": pl_rank_genes_groups_dotplot, # Add tool mapping # "pl_clustermap": pl_clustermap, "pl_highly_variable_genes": pl_highly_variable_genes, "pl_pca_variance_ratio": pl_pca_variance_ratio, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server