Skip to main content
Glama

pl_heatmap

Visualize gene expression patterns across cell groups using color-coded heatmaps to identify biological trends in single-cell RNA sequencing data.

Instructions

Heatmap of the expression values of genes.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
var_namesNovar_names should be a valid subset of adata.var_names or a mapping where the key is used as label to group the values.
groupbyYesThe key of the observation grouping to consider.
use_rawNoUse raw attribute of adata if present.
logNoPlot on logarithmic axis.
dendrogramNoIf True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added.
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
var_group_positionsNoUse this parameter to highlight groups of var_names with brackets or color blocks between the given start and end positions.
var_group_labelsNoLabels for each of the var_group_positions that want to be highlighted.
layerNoName of the AnnData object layer that wants to be plotted.
num_categoriesNoOnly used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.
var_group_rotationNoLabel rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.
standard_scaleNoWhether or not to standardize that dimension between 0 and 1.
swap_axesNoBy default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names.
show_gene_labelsNoBy default gene labels are shown when there are 50 or less genes. Otherwise the labels are removed.

Implementation Reference

  • Generic handler function that executes the Scanpy plotting function for 'pl_heatmap' (sc.pl.heatmap) using validated input arguments from the schema, saves the figure, and logs the operation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema and validation for the pl_heatmap tool, extending BaseMatrixModel with specific heatmap parameters.
    # 重构 HeatmapModel class HeatmapModel(BaseMatrixModel): """Input schema for the heatmap plotting tool.""" num_categories: int = Field( default=7, description="Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.", gt=0 ) var_group_rotation: Optional[float] = Field( default=None, description="Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees." ) standard_scale: Optional[Literal['var', 'obs']] = Field( default=None, description="Whether or not to standardize that dimension between 0 and 1." ) swap_axes: bool = Field( default=False, description="By default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names." ) show_gene_labels: Optional[bool] = Field( default=None, description="By default gene labels are shown when there are 50 or less genes. Otherwise the labels are removed." ) @field_validator('num_categories') def validate_num_categories(cls, v: int) -> int: """Validate num_categories is positive""" if v <= 0: raise ValueError("num_categories must be a positive integer") return v
  • Creation and definition of the pl_heatmap Tool object using MCP types, linking to the HeatmapModel schema.
    pl_heatmap = types.Tool( name="pl_heatmap", description="Heatmap of the expression values of genes.", inputSchema=HeatmapModel.model_json_schema(), )
  • Dictionary mapping pl_heatmap tool name to the underlying Scanpy function sc.pl.heatmap, used by the handler.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • MCP server call_tool handler that dispatches pl_heatmap calls (via pl_tools check) to run_pl_func.
    @server.call_tool() async def call_tool( name: str, arguments ): try: logger.info(f"Running {name} with {arguments}") if name in io_tools.keys(): res = run_io_func(ads, name, arguments) elif name in pp_tools.keys(): res = run_pp_func(ads, name, arguments) elif name in tl_tools.keys(): res = run_tl_func(ads, name, arguments) elif name in pl_tools.keys(): res = run_pl_func(ads, name, arguments) elif name in util_tools.keys(): res = run_util_func(ads, name, arguments) elif name in ccc_tools.keys(): res = run_ccc_func(ads.adata_dic[ads.active], name, arguments) output = str(res) if res is not None else str(ads.adata_dic[ads.active]) return [ types.TextContent( type="text", text=str({"output": output}) ) ] except Exception as error: logger.error(f"{name} with {error}") return [ types.TextContent( type="text", text=str({"Error": error}) ) ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server