Skip to main content
Glama

pl_matrixplot

Visualize mean gene expression patterns across cell groups with a heatmap to analyze differential expression in single-cell RNA sequencing data.

Instructions

matrixplot, Create a heatmap of the mean expression values per group of each var_names.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
figsizeNoFigure size. Format is (width, height).
color_mapNoColor map to use for continuous variables.
paletteNoColors to use for plotting categorical annotation groups.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.
vcenterNoThe value representing the center of the color scale.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
legend_fontoutlineNoLine width of the legend font outline in pt.
var_namesNovar_names should be a valid subset of adata.var_names or a mapping where the key is used as label to group the values.
groupbyYesThe key of the observation grouping to consider.
use_rawNoUse raw attribute of adata if present.
logNoPlot on logarithmic axis.
dendrogramNoIf True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added.
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
var_group_positionsNoUse this parameter to highlight groups of var_names with brackets or color blocks between the given start and end positions.
var_group_labelsNoLabels for each of the var_group_positions that want to be highlighted.
layerNoName of the AnnData object layer that wants to be plotted.
num_categoriesNoOnly used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.
cmapNoString denoting matplotlib color map.viridis
colorbar_titleNoTitle for the color bar. New line character (\n) can be used.Mean expression in group
var_group_rotationNoLabel rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.
standard_scaleNoWhether or not to standardize the given dimension between 0 and 1.
swap_axesNoBy default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names.

Implementation Reference

  • Generic handler function for all pl_ tools including pl_matrixplot. It retrieves the specific scanpy function via pl_func['pl_matrixplot'] = sc.pl.matrixplot, processes arguments based on function signature, calls it on the active adata, saves the figure, and logs the operation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Pydantic model defining the input schema (parameters and validation) for the pl_matrixplot tool, extending BaseMatrixModel with specific fields like num_categories, cmap, etc.
    class MatrixplotModel(BaseMatrixModel): """Input schema for the matrixplot plotting tool.""" num_categories: int = Field( default=7, description="Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.", gt=0 ) cmap: Optional[str] = Field( default='viridis', description="String denoting matplotlib color map." ) colorbar_title: Optional[str] = Field( default='Mean expression\nin group', description="Title for the color bar. New line character (\\n) can be used." ) var_group_rotation: Optional[float] = Field( default=None, description="Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees." ) standard_scale: Optional[Literal['var', 'group']] = Field( default=None, description="Whether or not to standardize the given dimension between 0 and 1." ) swap_axes: bool = Field( default=False, description="By default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names." ) @field_validator('num_categories') def validate_num_categories(cls, v: int) -> int: """Validate num_categories is positive""" if v <= 0: raise ValueError("num_categories must be a positive integer") return v
  • Definition and registration of the pl_matrixplot Tool object with name, description, and schema.
    pl_matrixplot = types.Tool( name="pl_matrixplot", description="matrixplot, Create a heatmap of the mean expression values per group of each var_names.", inputSchema=MatrixplotModel.model_json_schema(), )
  • pl_func dictionary that maps the tool name 'pl_matrixplot' to the underlying scanpy implementation sc.pl.matrixplot.
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • MCP server call_tool handler that dispatches pl_matrixplot requests to run_pl_func when name in pl_tools.keys().
    async def call_tool( name: str, arguments ): try: logger.info(f"Running {name} with {arguments}") if name in io_tools.keys(): res = run_io_func(ads, name, arguments) elif name in pp_tools.keys(): res = run_pp_func(ads, name, arguments) elif name in tl_tools.keys(): res = run_tl_func(ads, name, arguments) elif name in pl_tools.keys(): res = run_pl_func(ads, name, arguments) elif name in util_tools.keys(): res = run_util_func(ads, name, arguments) elif name in ccc_tools.keys(): res = run_ccc_func(ads.adata_dic[ads.active], name, arguments) output = str(res) if res is not None else str(ads.adata_dic[ads.active]) return [ types.TextContent( type="text", text=str({"output": output}) ) ] except Exception as error: logger.error(f"{name} with {error}") return [ types.TextContent( type="text", text=str({"Error": error}) ) ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server