Skip to main content
Glama

pl_matrixplot

Generate heatmaps to visualize mean expression values across groups using var_names, enabling clear comparison and analysis of single-cell RNA sequencing data with customizable color maps, scales, and grouping options.

Instructions

matrixplot, Create a heatmap of the mean expression values per group of each var_names.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
cmapNoString denoting matplotlib color map.viridis
color_mapNoColor map to use for continuous variables.
colorbar_titleNoTitle for the color bar. New line character (\n) can be used.Mean expression in group
dendrogramNoIf True or a valid dendrogram key, a dendrogram based on the hierarchical clustering between the groupby categories is added.
figsizeNoFigure size. Format is (width, height).
gene_symbolsNoColumn name in .var DataFrame that stores gene symbols.
groupbyYesThe key of the observation grouping to consider.
layerNoName of the AnnData object layer that wants to be plotted.
legend_fontoutlineNoLine width of the legend font outline in pt.
legend_fontsizeNoNumeric size in pt or string describing the size.
legend_fontweightNoLegend font weight. A numeric value in range 0-1000 or a string.bold
legend_locNoLocation of legend, either 'on data', 'right margin' or a valid keyword for the loc parameter.right margin
logNoPlot on logarithmic axis.
num_categoriesNoOnly used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.
paletteNoColors to use for plotting categorical annotation groups.
standard_scaleNoWhether or not to standardize the given dimension between 0 and 1.
swap_axesNoBy default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names.
use_rawNoUse raw attribute of adata if present.
var_group_labelsNoLabels for each of the var_group_positions that want to be highlighted.
var_group_positionsNoUse this parameter to highlight groups of var_names with brackets or color blocks between the given start and end positions.
var_group_rotationNoLabel rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees.
var_namesNovar_names should be a valid subset of adata.var_names or a mapping where the key is used as label to group the values.
vcenterNoThe value representing the center of the color scale.
vmaxNoThe value representing the upper limit of the color scale.
vminNoThe value representing the lower limit of the color scale.

Implementation Reference

  • Creation of the MCP Tool object named 'pl_matrixplot' with schema from MatrixplotModel.
    pl_matrixplot = types.Tool( name="pl_matrixplot", description="matrixplot, Create a heatmap of the mean expression values per group of each var_names.", inputSchema=MatrixplotModel.model_json_schema(), )
  • Pydantic model defining input parameters for the pl_matrixplot tool.
    class MatrixplotModel(BaseMatrixModel): """Input schema for the matrixplot plotting tool.""" num_categories: int = Field( default=7, description="Only used if groupby observation is not categorical. This value determines the number of groups into which the groupby observation should be subdivided.", gt=0 ) cmap: Optional[str] = Field( default='viridis', description="String denoting matplotlib color map." ) colorbar_title: Optional[str] = Field( default='Mean expression\nin group', description="Title for the color bar. New line character (\\n) can be used." ) var_group_rotation: Optional[float] = Field( default=None, description="Label rotation degrees. By default, labels larger than 4 characters are rotated 90 degrees." ) standard_scale: Optional[Literal['var', 'group']] = Field( default=None, description="Whether or not to standardize the given dimension between 0 and 1." ) swap_axes: bool = Field( default=False, description="By default, the x axis contains var_names and the y axis the groupby categories. By setting swap_axes then x are the groupby categories and y the var_names." ) @field_validator('num_categories') def validate_num_categories(cls, v: int) -> int: """Validate num_categories is positive""" if v <= 0: raise ValueError("num_categories must be a positive integer") return v
  • Handler function that executes the tool by calling the corresponding scanpy.pl function (sc.pl.matrixplot for pl_matrixplot) with validated arguments, saves the figure, and logs the operation.
    def run_pl_func(ads, func, arguments): """ Execute a Scanpy plotting function with the given arguments. Parameters ---------- adata : AnnData Annotated data matrix. func : str Name of the plotting function to execute. arguments : dict Arguments to pass to the plotting function. Returns ------- The result of the plotting function. """ adata = ads.adata_dic[ads.active] if func not in pl_func: raise ValueError(f"Unsupported function: {func}") run_func = pl_func[func] parameters = inspect.signature(run_func).parameters kwargs = {k: arguments.get(k) for k in parameters if k in arguments} if "title" not in parameters: kwargs.pop("title", False) kwargs.pop("return_fig", True) kwargs["show"] = False kwargs["save"] = ".png" try: fig = run_func(adata, **kwargs) fig_path = set_fig_path(func, **kwargs) add_op_log(adata, run_func, kwargs) return fig_path except Exception as e: raise e return fig_path
  • Mapping from tool names to underlying scanpy plotting functions; 'pl_matrixplot' maps to sc.pl.matrixplot
    pl_func = { "pl_pca": sc.pl.pca, "pl_embedding": sc.pl.embedding, # Add the new embedding function "diffmap": sc.pl.diffmap, "pl_violin": sc.pl.violin, "pl_stacked_violin": sc.pl.stacked_violin, "pl_heatmap": sc.pl.heatmap, "pl_dotplot": sc.pl.dotplot, "pl_matrixplot": sc.pl.matrixplot, "pl_tracksplot": sc.pl.tracksplot, "pl_scatter": sc.pl.scatter, "embedding_density": sc.pl.embedding_density, "rank_genes_groups": sc.pl.rank_genes_groups, "pl_rank_genes_groups_dotplot": sc.pl.rank_genes_groups_dotplot, # Add function mapping "pl_clustermap": sc.pl.clustermap, "pl_highly_variable_genes": sc.pl.highly_variable_genes, "pl_pca_variance_ratio": sc.pl.pca_variance_ratio, }
  • Collection of Tool objects for plotting tools, including the pl_matrixplot tool.
    pl_tools = { "pl_pca": pl_pca_tool, "pl_embedding": pl_embedding, # Add the new embedding tool # "diffmap": diffmap, "pl_violin": pl_violin, "pl_stacked_violin": pl_stacked_violin, "pl_heatmap": pl_heatmap, "pl_dotplot": pl_dotplot, "pl_matrixplot": pl_matrixplot, "pl_tracksplot": pl_tracksplot, "pl_scatter": pl_scatter, # "embedding_density": embedding_density, # "spatial": spatial, # "rank_genes_groups": rank_genes_groups, "pl_rank_genes_groups_dotplot": pl_rank_genes_groups_dotplot, # Add tool mapping # "pl_clustermap": pl_clustermap, "pl_highly_variable_genes": pl_highly_variable_genes, "pl_pca_variance_ratio": pl_pca_variance_ratio, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server