Skip to main content
Glama

scrublet

Identify and predict doublets in single-cell RNA sequencing data by analyzing transcriptomes, enabling accurate downstream analysis with configurable parameters for simulation and detection.

Instructions

Predict doublets using Scrublet

Input Schema

NameRequiredDescriptionDefault
adata_simNoOptional path to AnnData object with simulated doublets.
batch_keyNoKey in adata.obs for batch information.
expected_doublet_rateNoEstimated doublet rate for the experiment.
get_doublet_neighbor_parentsNoReturn parent transcriptomes that generated doublet neighbors.
knn_dist_metricNoDistance metric used when finding nearest neighbors.euclidean
log_transformNoWhether to log-transform the data prior to PCA.
mean_centerNoCenter data such that each gene has mean of 0.
n_neighborsNoNumber of neighbors used to construct KNN graph.
n_prin_compsNoNumber of principal components used for embedding.
normalize_varianceNoNormalize data such that each gene has variance of 1.
sim_doublet_ratioNoNumber of doublets to simulate relative to observed transcriptomes.
stdev_doublet_rateNoUncertainty in the expected doublet rate.
synthetic_doublet_umi_subsamplingNoRate for sampling UMIs when creating synthetic doublets.
thresholdNoDoublet score threshold for calling a transcriptome a doublet.
use_approx_neighborsNoUse approximate nearest neighbor method (annoy).

Input Schema (JSON Schema)

{ "description": "Input schema for the scrublet doublet prediction tool.", "properties": { "adata_sim": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Optional path to AnnData object with simulated doublets.", "title": "Adata Sim" }, "batch_key": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "description": "Key in adata.obs for batch information.", "title": "Batch Key" }, "expected_doublet_rate": { "default": 0.05, "description": "Estimated doublet rate for the experiment.", "maximum": 1, "minimum": 0, "title": "Expected Doublet Rate", "type": "number" }, "get_doublet_neighbor_parents": { "default": false, "description": "Return parent transcriptomes that generated doublet neighbors.", "title": "Get Doublet Neighbor Parents", "type": "boolean" }, "knn_dist_metric": { "default": "euclidean", "description": "Distance metric used when finding nearest neighbors.", "title": "Knn Dist Metric", "type": "string" }, "log_transform": { "default": false, "description": "Whether to log-transform the data prior to PCA.", "title": "Log Transform", "type": "boolean" }, "mean_center": { "default": true, "description": "Center data such that each gene has mean of 0.", "title": "Mean Center", "type": "boolean" }, "n_neighbors": { "anyOf": [ { "exclusiveMinimum": 0, "type": "integer" }, { "type": "null" } ], "default": null, "description": "Number of neighbors used to construct KNN graph.", "title": "N Neighbors" }, "n_prin_comps": { "default": 30, "description": "Number of principal components used for embedding.", "exclusiveMinimum": 0, "title": "N Prin Comps", "type": "integer" }, "normalize_variance": { "default": true, "description": "Normalize data such that each gene has variance of 1.", "title": "Normalize Variance", "type": "boolean" }, "sim_doublet_ratio": { "default": 2, "description": "Number of doublets to simulate relative to observed transcriptomes.", "exclusiveMinimum": 0, "title": "Sim Doublet Ratio", "type": "number" }, "stdev_doublet_rate": { "default": 0.02, "description": "Uncertainty in the expected doublet rate.", "maximum": 1, "minimum": 0, "title": "Stdev Doublet Rate", "type": "number" }, "synthetic_doublet_umi_subsampling": { "default": 1, "description": "Rate for sampling UMIs when creating synthetic doublets.", "exclusiveMinimum": 0, "maximum": 1, "title": "Synthetic Doublet Umi Subsampling", "type": "number" }, "threshold": { "anyOf": [ { "maximum": 1, "minimum": 0, "type": "number" }, { "type": "null" } ], "default": null, "description": "Doublet score threshold for calling a transcriptome a doublet.", "title": "Threshold" }, "use_approx_neighbors": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "description": "Use approximate nearest neighbor method (annoy).", "title": "Use Approx Neighbors" } }, "title": "ScrubletModel", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/huang-sh/scmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server