Skip to main content
Glama
vparlapalli490

ServiceNow MCP Server

update_changeset

Modify an existing changeset in ServiceNow by updating its name, description, state, or assigned developer using the changeset ID. Streamline changeset management for efficient workflow.

Instructions

Update an existing changeset in ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
changeset_idYesChangeset ID or sys_id
descriptionNoDescription of the changeset
developerNoDeveloper responsible for the changeset
nameNoName of the changeset
stateNoState of the changeset

Implementation Reference

  • Main handler function that executes the update_changeset tool: validates params, prepares PATCH request to ServiceNow sys_update_set table, handles auth and errors.
    def update_changeset( auth_manager: AuthManager, server_config: ServerConfig, params: Union[Dict[str, Any], UpdateChangesetParams], ) -> Dict[str, Any]: """ Update an existing changeset in ServiceNow. Args: auth_manager: The authentication manager. server_config: The server configuration. params: The parameters for updating a changeset. Can be a dictionary or a UpdateChangesetParams object. Returns: The updated changeset. """ # Unwrap and validate parameters result = _unwrap_and_validate_params( params, UpdateChangesetParams, required_fields=["changeset_id"] ) if not result["success"]: return result validated_params = result["params"] # Prepare the request data data = {} # Add optional fields if provided if validated_params.name: data["name"] = validated_params.name if validated_params.description: data["description"] = validated_params.description if validated_params.state: data["state"] = validated_params.state if validated_params.developer: data["developer"] = validated_params.developer # If no fields to update, return error if not data: return { "success": False, "message": "No fields to update", } # Get the instance URL instance_url = _get_instance_url(auth_manager, server_config) if not instance_url: return { "success": False, "message": "Cannot find instance_url in either server_config or auth_manager", } # Get the headers headers = _get_headers(auth_manager, server_config) if not headers: return { "success": False, "message": "Cannot find get_headers method in either auth_manager or server_config", } # Add Content-Type header headers["Content-Type"] = "application/json" # Make the API request url = f"{instance_url}/api/now/table/sys_update_set/{validated_params.changeset_id}" try: response = requests.patch(url, json=data, headers=headers) response.raise_for_status() result = response.json() return { "success": True, "message": "Changeset updated successfully", "changeset": result["result"], } except requests.exceptions.RequestException as e: logger.error(f"Error updating changeset: {e}") return { "success": False, "message": f"Error updating changeset: {str(e)}", }
  • Pydantic schema defining input parameters for the update_changeset tool.
    class UpdateChangesetParams(BaseModel): """Parameters for updating a changeset.""" changeset_id: str = Field(..., description="Changeset ID or sys_id") name: Optional[str] = Field(None, description="Name of the changeset") description: Optional[str] = Field(None, description="Description of the changeset") state: Optional[str] = Field(None, description="State of the changeset") developer: Optional[str] = Field(None, description="Developer responsible for the changeset")
  • Tool registration in get_tool_definitions: maps 'update_changeset' to its handler, schema, description, and serialization details.
    "update_changeset": ( update_changeset_tool, UpdateChangesetParams, str, # Expects JSON string "Update an existing changeset in ServiceNow", "json_dict", # Tool returns Pydantic model ),
  • Helper function used by update_changeset to unwrap and validate input parameters against the Pydantic schema.
    def _unwrap_and_validate_params( params: Union[Dict[str, Any], BaseModel], model_class: Type[T], required_fields: Optional[List[str]] = None ) -> Dict[str, Any]: """ Unwrap and validate parameters. Args: params: The parameters to unwrap and validate. Can be a dictionary or a Pydantic model. model_class: The Pydantic model class to validate against. required_fields: List of fields that must be present. Returns: A dictionary with success status and validated parameters or error message. """ try: # Handle case where params is already a Pydantic model if isinstance(params, BaseModel): # If it's already the correct model class, use it directly if isinstance(params, model_class): model_instance = params # Otherwise, convert to dict and create new instance else: model_instance = model_class(**params.dict()) # Handle dictionary case else: # Create model instance model_instance = model_class(**params) # Check required fields if required_fields: missing_fields = [] for field in required_fields: if getattr(model_instance, field, None) is None: missing_fields.append(field) if missing_fields: return { "success": False, "message": f"Missing required fields: {', '.join(missing_fields)}", } return { "success": True, "params": model_instance, } except Exception as e: return { "success": False, "message": f"Invalid parameters: {str(e)}", }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vparlapalli490/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server