Skip to main content
Glama
vparlapalli490

ServiceNow MCP Server

list_knowledge_bases

Retrieve and display available knowledge bases from ServiceNow to access documentation and support articles.

Instructions

List knowledge bases from ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
limitNoMaximum number of knowledge bases to return
offsetNoOffset for pagination
activeNoFilter by active status
queryNoSearch query for knowledge bases

Implementation Reference

  • The handler function that executes the tool logic: queries the ServiceNow kb_knowledge_base table API with pagination and filters, processes the response into a structured list of knowledge bases.
    def list_knowledge_bases( config: ServerConfig, auth_manager: AuthManager, params: ListKnowledgeBasesParams, ) -> Dict[str, Any]: """ List knowledge bases with filtering options. Args: config: Server configuration. auth_manager: Authentication manager. params: Parameters for listing knowledge bases. Returns: Dictionary with list of knowledge bases and metadata. """ api_url = f"{config.api_url}/table/kb_knowledge_base" # Build query parameters query_params = { "sysparm_limit": params.limit, "sysparm_offset": params.offset, "sysparm_display_value": "true", } # Build query string query_parts = [] if params.active is not None: query_parts.append(f"active={str(params.active).lower()}") if params.query: query_parts.append(f"titleLIKE{params.query}^ORdescriptionLIKE{params.query}") if query_parts: query_params["sysparm_query"] = "^".join(query_parts) # Make request try: response = requests.get( api_url, params=query_params, headers=auth_manager.get_headers(), timeout=config.timeout, ) response.raise_for_status() # Get the JSON response json_response = response.json() # Safely extract the result if isinstance(json_response, dict) and "result" in json_response: result = json_response.get("result", []) else: logger.error("Unexpected response format: %s", json_response) return { "success": False, "message": "Unexpected response format", "knowledge_bases": [], "count": 0, "limit": params.limit, "offset": params.offset, } # Transform the results - create a simpler structure knowledge_bases = [] # Handle either string or list if isinstance(result, list): for kb_item in result: if not isinstance(kb_item, dict): logger.warning("Skipping non-dictionary KB item: %s", kb_item) continue # Safely extract values kb_id = kb_item.get("sys_id", "") title = kb_item.get("title", "") description = kb_item.get("description", "") # Extract nested values safely owner = "" if isinstance(kb_item.get("owner"), dict): owner = kb_item["owner"].get("display_value", "") managers = "" if isinstance(kb_item.get("kb_managers"), dict): managers = kb_item["kb_managers"].get("display_value", "") active = False if kb_item.get("active") == "true": active = True created = kb_item.get("sys_created_on", "") updated = kb_item.get("sys_updated_on", "") knowledge_bases.append({ "id": kb_id, "title": title, "description": description, "owner": owner, "managers": managers, "active": active, "created": created, "updated": updated, }) else: logger.warning("Result is not a list: %s", result) return { "success": True, "message": f"Found {len(knowledge_bases)} knowledge bases", "knowledge_bases": knowledge_bases, "count": len(knowledge_bases), "limit": params.limit, "offset": params.offset, } except requests.RequestException as e: logger.error(f"Failed to list knowledge bases: {e}") return { "success": False, "message": f"Failed to list knowledge bases: {str(e)}", "knowledge_bases": [], "count": 0, "limit": params.limit, "offset": params.offset, }
  • Pydantic model defining the input parameters for the list_knowledge_bases tool, including pagination, active filter, and search query.
    class ListKnowledgeBasesParams(BaseModel): """Parameters for listing knowledge bases.""" limit: int = Field(10, description="Maximum number of knowledge bases to return") offset: int = Field(0, description="Offset for pagination") active: Optional[bool] = Field(None, description="Filter by active status") query: Optional[str] = Field(None, description="Search query for knowledge bases")
  • Tool registration in the central tool_definitions dictionary used by the MCP server, specifying the handler function alias, input schema, description, and serialization method.
    "list_knowledge_bases": ( list_knowledge_bases_tool, ListKnowledgeBasesParams, Dict[str, Any], # Expects dict "List knowledge bases from ServiceNow", "raw_dict", # Tool returns raw dict ),
  • Import of the list_knowledge_bases handler in the tools package __init__.py, making it available for higher-level imports and registrations.
    list_knowledge_bases,

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vparlapalli490/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server