Skip to main content
Glama
vparlapalli490

ServiceNow MCP Server

add_workflow_activity

Enable workflow customization by adding activities such as approvals, tasks, or notifications to ServiceNow workflows using the specified workflow version ID, name, type, and optional attributes.

Instructions

Add a new activity to a workflow in ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
activity_typeYesType of activity (e.g., 'approval', 'task', 'notification')
attributesNoAdditional attributes for the activity
descriptionNoDescription of the activity
nameYesName of the activity
workflow_version_idYesWorkflow version ID

Implementation Reference

  • Core handler function for the 'add_workflow_activity' tool. Handles parameter validation, API request to ServiceNow's wf_activity table, and returns the created activity.
    def add_workflow_activity( auth_manager: AuthManager, server_config: ServerConfig, params: Dict[str, Any], ) -> Dict[str, Any]: """ Add a new activity to a workflow. Args: auth_manager: Authentication manager server_config: Server configuration params: Parameters for adding a workflow activity Returns: Dict[str, Any]: Added workflow activity details """ # Unwrap parameters if needed params = _unwrap_params(params, AddWorkflowActivityParams) # Get the correct auth_manager and server_config try: auth_manager, server_config = _get_auth_and_config(auth_manager, server_config) except ValueError as e: logger.error(f"Error getting auth and config: {e}") return {"error": str(e)} # Validate required parameters workflow_version_id = params.get("workflow_version_id") if not workflow_version_id: return {"error": "Workflow version ID is required"} activity_name = params.get("name") if not activity_name: return {"error": "Activity name is required"} # Prepare data for the API request data = { "workflow_version": workflow_version_id, "name": activity_name, } if params.get("description"): data["description"] = params["description"] if params.get("activity_type"): data["activity_type"] = params["activity_type"] if params.get("attributes"): # Add any additional attributes data.update(params["attributes"]) # Make the API request try: headers = auth_manager.get_headers() url = f"{server_config.instance_url}/api/now/table/wf_activity" response = requests.post(url, headers=headers, json=data) response.raise_for_status() result = response.json() return { "activity": result.get("result", {}), "message": "Workflow activity added successfully", } except requests.RequestException as e: logger.error(f"Error adding workflow activity: {e}") return {"error": str(e)} except Exception as e: logger.error(f"Unexpected error adding workflow activity: {e}") return {"error": str(e)}
  • Pydantic model defining the input parameters schema for the add_workflow_activity tool.
    class AddWorkflowActivityParams(BaseModel): """Parameters for adding an activity to a workflow.""" workflow_version_id: str = Field(..., description="Workflow version ID") name: str = Field(..., description="Name of the activity") description: Optional[str] = Field(None, description="Description of the activity") activity_type: str = Field(..., description="Type of activity (e.g., 'approval', 'task', 'notification')") attributes: Optional[Dict[str, Any]] = Field(None, description="Additional attributes for the activity")
  • Tool registration in the central get_tool_definitions() function, associating the tool name with its handler alias, schema, return type hint, description, and serialization method.
    "add_workflow_activity": ( add_workflow_activity_tool, AddWorkflowActivityParams, str, # Expects JSON string "Add a new activity to a workflow in ServiceNow", "json_dict", # Tool returns Pydantic model ),
  • Exposes the add_workflow_activity function in the tools package __all__ list for easy import.
    "add_workflow_activity",
  • Helper function used by the handler to unwrap and validate parameters using the Pydantic schema.
    def _unwrap_params(params: Any, param_class: Type[T]) -> Dict[str, Any]: """ Unwrap parameters if they're wrapped in a Pydantic model. This helps handle cases where the parameters are passed as a model instead of a dict. """ if isinstance(params, dict): return params if isinstance(params, param_class): return params.dict(exclude_none=True) return params

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vparlapalli490/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server