Skip to main content
Glama

Medical Calculator MCP Service

api_test_sofa_calculator.py12.1 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_sofa_calculator(client): """测试 SOFA 计算器的各种功能和参数组合""" def print_header(): print("\n" + "=" * 60) print("SOFA 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_calculation_result(data): """打印完整的计算结果""" sofa_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- SOFA 评分: {sofa_value} {unit}") # 死亡率风险和器官评分 if metadata: mortality_risk = metadata.get("mortality_risk", "N/A") organ_scores = metadata.get("organ_scores", {}) pao2_fio2_ratio = metadata.get("pao2_fio2_ratio", "N/A") respiratory_support = metadata.get("respiratory_support", False) map_value = metadata.get("map_value", "N/A") print(f"- 死亡率风险: {mortality_risk}") print(f"- PaO2/FiO2 比值: {pao2_fio2_ratio}") print(f"- 呼吸支持: {'是' if respiratory_support else '否'}") if map_value != "N/A": print(f"- 平均动脉压: {map_value} mmHg") if organ_scores: print("- 器官系统评分:") for organ, score in organ_scores.items(): organ_names = { "respiratory": "呼吸系统", "coagulation": "凝血系统", "liver": "肝脏系统", "cardiovascular": "心血管系统", "cns": "中枢神经系统", "renal": "肾脏系统" } print(f" {organ_names.get(organ, organ)}: {score} 分") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(显示前几行) if explanation: explanation_lines = explanation.split('\n')[:5] print(f"- 解释: {explanation_lines[0] if explanation_lines else ''}") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!SOFA 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "器官衰竭评估 (6个器官系统)", "呼吸系统评估 (PaO2/FiO2比值)", "凝血系统评估 (血小板计数)", "肝脏系统评估 (胆红素)", "心血管系统评估 (血压/血管活性药物)", "中枢神经系统评估 (GCS评分)", "肾脏系统评估 (肌酐/尿量)", "死亡率风险预测", "参数验证", "边界测试", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases test_cases = [ { "name": "正常患者 (低风险)", "params": { "pao2": 400, "fio2": 21, "platelets": 200, "bilirubin": 1.0, "gcs": 15, "creatinine": 1.0, "systolic_bp": 120, "diastolic_bp": 80 }, "expected_valid": True, "description": "健康患者所有参数正常", }, { "name": "中度器官衰竭", "params": { "pao2": 250, "fio2": 50, "mechanical_ventilation": False, "platelets": 80, "bilirubin": 3.0, "gcs": 12, "creatinine": 2.5, "systolic_bp": 90, "diastolic_bp": 60 }, "expected_valid": True, "description": "中度多器官功能障碍", }, { "name": "重度器官衰竭 (使用血管活性药物)", "params": { "pao2": 80, "fio2": 80, "mechanical_ventilation": True, "platelets": 30, "bilirubin": 8.0, "gcs": 6, "dopamine": 20, "epinephrine": 0.15, "creatinine": 4.5 }, "expected_valid": True, "description": "重度多器官衰竭,使用机械通气和血管活性药物", }, { "name": "使用CPAP的呼吸衰竭", "params": { "pao2": 150, "fio2": 60, "cpap": True, "platelets": 120, "bilirubin": 2.5, "gcs": 14, "dobutamine": 3.0, "creatinine": 1.8 }, "expected_valid": True, "description": "使用CPAP的患者", }, { "name": "使用尿量评估肾功能", "params": { "pao2": 300, "fio2": 40, "platelets": 150, "bilirubin": 1.5, "gcs": 13, "urine_output": 300, "norepinephrine": 0.08 }, "expected_valid": True, "description": "使用尿量而非肌酐评估肾功能", }, { "name": "极低尿量", "params": { "pao2": 200, "fio2": 60, "platelets": 60, "bilirubin": 15.0, "gcs": 3, "urine_output": 100, "dopamine": 25 }, "expected_valid": True, "description": "极低尿量的重症患者", }, { "name": "缺少肾功能参数 (应该失败)", "params": { "pao2": 300, "fio2": 40, "platelets": 150, "bilirubin": 1.5, "gcs": 15, "systolic_bp": 120, "diastolic_bp": 80 }, "expected_valid": False, "description": "缺少肌酐和尿量参数", }, { "name": "缺少心血管参数 (应该失败)", "params": { "pao2": 300, "fio2": 40, "platelets": 150, "bilirubin": 1.5, "gcs": 15, "creatinine": 1.2 }, "expected_valid": False, "description": "缺少血压和血管活性药物信息", }, { "name": "边界值测试 - 最小值", "params": { "pao2": 20, "fio2": 21, "platelets": 1, "bilirubin": 0.1, "gcs": 3, "creatinine": 0.1, "systolic_bp": 30, "diastolic_bp": 20 }, "expected_valid": True, "description": "所有参数最小值测试", }, { "name": "边界值测试 - 最大值", "params": { "pao2": 500, "fio2": 100, "platelets": 1000, "bilirubin": 50, "gcs": 15, "creatinine": 15, "dopamine": 50, "dobutamine": 50, "epinephrine": 5, "norepinephrine": 5, "urine_output": 5000 }, "expected_valid": True, "description": "所有参数最大值测试", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test try: calc_result = await client.call_tool( "calculate", { "calculator_id": 43, # SOFA calculator ID "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("SOFA 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("SOFA 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ SOFA 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 SOFA 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_sofa_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ SOFA 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server