Skip to main content
Glama

Medical Calculator MCP Service

api_test_caprini_calculator.py11.5 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_caprini_calculator(client): """测试 Caprini 分数计算器的各种功能""" def print_header(): print("\n" + "=" * 60) print("Caprini Score 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_calculation_result(data): """打印完整的计算结果""" value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- Caprini Score: {value} {unit}") # 风险分层信息 if metadata: risk_level = metadata.get("risk_level", "N/A") vte_risk = metadata.get("vte_risk", "N/A") recommendation = metadata.get("recommendation", "N/A") print(f"- 风险等级: {risk_level}") print(f"- VTE 风险: {vte_risk}") print(f"- 建议: {recommendation}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取前几行显示) if explanation: lines = explanation.split('\n')[:5] # 只显示前5行 print(f"- 解释摘要: {lines[0] if lines else 'N/A'}") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!Caprini 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "年龄分组评分 (≤40, 41-60, 61-74, ≥75)", "性别评分", "手术类型评分", "近期疾病和外伤", "静脉疾病和血栓史", "活动能力评估", "BMI 评分", "参数验证", "风险分层", "预防建议" ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases - 基于Caprini评分系统的各种场景 test_cases = [ { "name": "Low risk young male", "params": { "age": 30, "sex": "Male", "bmi": 22.5, "surgery_type": "none", "mobility": "normal" }, "expected_valid": True, "expected_score": 0, # Age: 0, Male: 0, BMI<25: 0 "description": "低风险年轻男性,无手术史" }, { "name": "Moderate risk female with minor surgery", "params": { "age": 45, "sex": "Female", "bmi": 28.0, "surgery_type": "minor", "mobility": "normal" }, "expected_valid": True, "expected_score": 5, # Age(41-60): 1, Female: 1, BMI≥25: 2, Minor surgery: 1 = 5 "description": "中等风险女性,有小手术" }, { "name": "High risk elderly with major surgery", "params": { "age": 80, "sex": "Female", "bmi": 30.0, "surgery_type": "major", "malignancy": True, "previous_dvt": True, "mobility": "bed_rest" }, "expected_valid": True, "expected_score": 14, # Age(≥75): 3, Female: 1, BMI≥25: 2, Major surgery: 2, Malignancy: 2, Previous DVT: 3, Bed rest: 1 = 14 "description": "高风险老年患者,多个危险因素" }, { "name": "Patient with multiple thrombophilia", "params": { "age": 55, "sex": "Female", "bmi": 32.0, "positive_factor_v": True, "positive_prothrombin": True, "family_history_thrombosis": True, "varicose_veins": True }, "expected_valid": True, "expected_score": 14, # Age: 1, Female: 1, BMI: 2, Factor V: 3, Prothrombin: 3, Family history: 3, Varicose veins: 1 = 14 "description": "多种血栓形成倾向患者" }, { "name": "Post-surgical with complications", "params": { "age": 65, "sex": "Male", "bmi": 26.5, "surgery_type": "elective_major_lower_extremity_arthroplasty", "chf": True, "pneumonia": True, "current_central_venous": True }, "expected_valid": True, "expected_score": 13, # Age: 2, Male: 0, BMI: 2, Elective major LE: 5, CHF: 1, Pneumonia: 1, Central venous: 2 = 13 "description": "术后并发症患者" }, { "name": "Trauma patient with immobilization", "params": { "age": 40, "sex": "Male", "bmi": 24.0, "multiple_trauma": True, "hip_pelvis_leg_fracture": True, "immobilizing_plaster_cast": True, "mobility": "confined_bed_72h" }, "expected_valid": True, "expected_score": 14, # Age: 0, Male: 0, BMI: 0, Multiple trauma: 5, Hip fracture: 5, Plaster cast: 2, Confined bed: 2 = 14 "description": "外伤患者伴制动" }, { "name": "Invalid age (negative)", "params": { "age": -5, "sex": "Male", "bmi": 25.0 }, "expected_valid": False, "description": "无效年龄(负数)" }, { "name": "Invalid BMI (too high)", "params": { "age": 50, "sex": "Female", "bmi": 100.0 }, "expected_valid": False, "description": "无效BMI(过高)" }, { "name": "Extreme high risk scenario", "params": { "age": 85, "sex": "Female", "bmi": 35.0, "surgery_type": "elective_major_lower_extremity_arthroplasty", "stroke": True, "acute_spinal_cord_injury": True, "previous_pe": True, "malignancy": True, "mobility": "confined_bed_72h", "copd": True }, "expected_valid": True, "expected_score": 29, # Age: 3, Female: 1, BMI: 2, Surgery: 5, Stroke: 5, Spinal injury: 5, Previous PE: 3, Malignancy: 2, Confined bed: 2, COPD: 1 "description": "极高风险场景" } ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test try: calc_result = await client.call_tool( "calculate", { "calculator_id": 36, "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False elif "expected_score" in test_case: actual_score = data.get("value") if actual_score != test_case["expected_score"]: print(f"- 错误: 预期分数 {test_case['expected_score']}, 实际分数 {actual_score}") test_passed = False else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("Caprini Score 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("Caprini Score 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ Caprini Score 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 Caprini Score 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_caprini_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ Caprini Score 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server