Skip to main content
Glama

Medical Calculator MCP Service

api_test_qtc_fredericia_calculator.py10.9 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_qtc_fredericia_calculator(client): """测试 QTc Fredericia 计算器的各种功能""" def print_header(): print("\n" + "=" * 60) print("QTc Fredericia 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_validation_result(expected, actual, errors=None, warnings=None): if expected == actual: status = "✅ 通过" else: status = "❌ 失败" expected_text = "有效" if expected else "无效" actual_text = "有效" if actual else "无效" print(f"- 验证结果: {status} (期望: {expected_text}, 实际: {actual_text})") if errors: print(f"- ⚠️ 错误: {errors}") if warnings: print(f"- ⚠️ 警告: {warnings}") def print_calculation_result(data, expected_value=None): """打印完整的计算结果""" qtc_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- QTc Fredericia 值: {qtc_value} {unit}") # 期望值比较 if expected_value is not None: diff = abs(float(qtc_value) - expected_value) if qtc_value != "N/A" else 999 tolerance = expected_value * 0.05 # 5% 容差 if diff <= tolerance: print(f"- 期望值: {expected_value:.3f} (✅ 在容差范围内, 差异: {diff:.3f})") else: print(f"- 期望值: {expected_value:.3f} (❌ 超出容差范围, 差异: {diff:.3f})") # 原始输入和转换后的值 if metadata: qt_interval = metadata.get("qt_interval") heart_rate = metadata.get("heart_rate") rr_interval = metadata.get("rr_interval") interpretation = metadata.get("interpretation") formula = metadata.get("formula") if qt_interval: print(f"- QT间期: {qt_interval} msec") if heart_rate: print(f"- 心率: {heart_rate} bpm") if rr_interval: print(f"- RR间期: {rr_interval} 秒") if interpretation: print(f"- 解释: {interpretation}") if formula: print(f"- 公式: {formula}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取前几行显示) if explanation: lines = explanation.strip().split('\n')[:3] # 只显示前3行 print(f"- 计算过程: {' / '.join(lines)}") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!QTc Fredericia 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "QTc Fredericia 公式计算", "不同心率测试", "参数验证", "QTc 分类", "错误处理", "边界测试", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases based on JSONL data test_cases = [ { "name": "Normal heart rate (70 bpm)", "params": {"heart_rate": 70, "qt_interval": 330}, "expected_valid": True, "expected_value": 347.419, "description": "正常心率下的QTc Fredericia计算", }, { "name": "High heart rate (168 bpm)", "params": {"heart_rate": 168, "qt_interval": 330}, "expected_valid": True, "expected_value": 465.184, "description": "高心率下的QTc Fredericia计算", }, { "name": "Low heart rate (59 bpm)", "params": {"heart_rate": 59, "qt_interval": 330}, "expected_valid": True, "expected_value": 328.151, "description": "低心率下的QTc Fredericia计算", }, { "name": "Very high heart rate (180 bpm)", "params": {"heart_rate": 180, "qt_interval": 330}, "expected_valid": True, "expected_value": 476.101, "description": "极高心率下的QTc Fredericia计算", }, { "name": "Very low heart rate (47 bpm)", "params": {"heart_rate": 47, "qt_interval": 330}, "expected_valid": True, "expected_value": 304.170, "description": "极低心率下的QTc Fredericia计算", }, { "name": "Invalid heart rate (negative)", "params": {"heart_rate": -10, "qt_interval": 330}, "expected_valid": False, "description": "无效心率(负数)", }, { "name": "Invalid QT interval (zero)", "params": {"heart_rate": 70, "qt_interval": 0}, "expected_valid": False, "description": "无效QT间期(零)", }, { "name": "Heart rate too high", "params": {"heart_rate": 300, "qt_interval": 330}, "expected_valid": False, "description": "心率过高(超出范围)", }, { "name": "Heart rate too low", "params": {"heart_rate": 20, "qt_interval": 330}, "expected_valid": False, "description": "心率过低(低于范围)", }, { "name": "QT interval too high", "params": {"heart_rate": 70, "qt_interval": 900}, "expected_valid": False, "description": "QT间期过高(超出范围)", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test (validation is included in calculate) try: calc_result = await client.call_tool( "calculate", { "calculator_id": 56, # QTc Fredericia calculator ID "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] expected_value = test_case.get("expected_value") print_calculation_result(data, expected_value) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False elif expected_value is not None: # 检查计算结果是否在预期范围内(5% 容差) actual_value = data.get("value") if actual_value != "N/A": diff = abs(float(actual_value) - expected_value) tolerance = expected_value * 0.05 if diff > tolerance: print(f"- 错误: 计算结果超出预期范围") test_passed = False else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("QTc Fredericia 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("QTc Fredericia 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ QTc Fredericia 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 QTc Fredericia 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_qtc_fredericia_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ QTc Fredericia 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server