Skip to main content
Glama

Medical Calculator MCP Service

api_test_feverpain_calculator.py11.7 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_feverpain_calculator(client): """测试 FeverPAIN 计算器的各种功能""" def print_header(): print("\n" + "=" * 60) print("FeverPAIN 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_calculation_result(data): """打印完整的计算结果""" score_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- FeverPAIN 评分: {score_value} {unit}") # 元数据信息 if metadata: strep_probability = metadata.get("strep_probability", "N/A") recommendation = metadata.get("recommendation", "N/A") print(f"- 链球菌感染概率: {strep_probability}") print(f"- 建议: {recommendation}") # 打印各项得分 fever_points = metadata.get("fever_points", 0) cough_coryza_points = metadata.get("cough_coryza_points", 0) onset_points = metadata.get("onset_points", 0) purulent_points = metadata.get("purulent_points", 0) inflammation_points = metadata.get("inflammation_points", 0) print(f"- 详细得分: 发热({fever_points}) + 无咳嗽/鼻炎({cough_coryza_points}) + 发病≤3天({onset_points}) + 化脓性扁桃体({purulent_points}) + 严重炎症({inflammation_points})") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取前几行显示) if explanation: lines = explanation.strip().split('\n') if len(lines) > 3: print(f"- 解释: {lines[0]}...(共{len(lines)}行)") else: print(f"- 解释: {explanation.strip()}") def print_test_result(i, passed, expected_score=None, actual_score=None): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") if expected_score is not None and actual_score is not None: print(f"- 期望评分: {expected_score}, 实际评分: {actual_score}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!FeverPAIN 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "发热评估", "咳嗽/鼻炎症状评估", "症状发作时间评估", "化脓性扁桃体评估", "扁桃体炎症严重程度评估", "综合评分计算", "链球菌感染概率评估", "治疗建议生成", "边界测试" ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases based on data from medcalc_train_testcase_s20.jsonl test_cases = [ { "name": "仅症状发作时间 ≤3天", "params": { "fever_24_hours": False, "cough_coryza_absent": False, "symptom_onset": True, "purulent_tonsils": False, "severe_tonsil_inflammation": False }, "expected_score": 1, "description": "Row 6032: 仅症状发作≤3天为真" }, { "name": "无任何症状", "params": { "fever_24_hours": False, "cough_coryza_absent": False, "symptom_onset": False, "purulent_tonsils": False, "severe_tonsil_inflammation": False }, "expected_score": 0, "description": "Row 6047: 所有症状均为假" }, { "name": "化脓性扁桃体 + 症状发作 ≤3天", "params": { "fever_24_hours": False, "cough_coryza_absent": False, "symptom_onset": True, "purulent_tonsils": True, "severe_tonsil_inflammation": False }, "expected_score": 2, "description": "Row 6039: 化脓性扁桃体 + 症状发作≤3天" }, { "name": "发热 + 无咳嗽鼻炎", "params": { "fever_24_hours": True, "cough_coryza_absent": True, "symptom_onset": False, "purulent_tonsils": False, "severe_tonsil_inflammation": False }, "expected_score": 2, "description": "Row 6030: 发热在过去24小时 + 无咳嗽或鼻炎" }, { "name": "仅化脓性扁桃体", "params": { "fever_24_hours": False, "cough_coryza_absent": False, "symptom_onset": False, "purulent_tonsils": True, "severe_tonsil_inflammation": False }, "expected_score": 1, "description": "Row 6033: 仅化脓性扁桃体为真" }, { "name": "发热 + 无咳嗽鼻炎 + 症状发作 ≤3天", "params": { "fever_24_hours": True, "cough_coryza_absent": True, "symptom_onset": True, "purulent_tonsils": False, "severe_tonsil_inflammation": False }, "expected_score": 3, "description": "Row 6027: 三项指标为真" }, { "name": "仅发热", "params": { "fever_24_hours": True, "cough_coryza_absent": False, "symptom_onset": False, "purulent_tonsils": False, "severe_tonsil_inflammation": False }, "expected_score": 1, "description": "Row 6029: 仅发热在过去24小时为真" }, { "name": "发热 + 症状发作 ≤3天", "params": { "fever_24_hours": True, "cough_coryza_absent": False, "symptom_onset": True, "purulent_tonsils": False, "severe_tonsil_inflammation": False }, "expected_score": 2, "description": "Row 6026: 发热 + 症状发作≤3天" }, { "name": "症状发作 ≤3天 + 化脓性扁桃体 + 严重扁桃体炎症", "params": { "fever_24_hours": False, "cough_coryza_absent": False, "symptom_onset": True, "purulent_tonsils": True, "severe_tonsil_inflammation": True }, "expected_score": 3, "description": "Row 6037: 三项严重指标为真" }, { "name": "所有症状都存在(最高分)", "params": { "fever_24_hours": True, "cough_coryza_absent": True, "symptom_onset": True, "purulent_tonsils": True, "severe_tonsil_inflammation": True }, "expected_score": 5, "description": "边界测试: 所有症状都存在" } ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test try: calc_result = await client.call_tool( "calculate", { "calculator_id": 33, "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查评分是否符合预期 actual_score = data.get("value") expected_score = test_case.get("expected_score") if expected_score is not None and actual_score != expected_score: print(f"- 错误: 期望评分 {expected_score},但得到 {actual_score}") test_passed = False else: # 计算失败 error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") test_passed = False except Exception as e: print(f"- 计算错误: {e}") test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed, test_case.get("expected_score"), data.get("value") if 'data' in locals() else None) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("FeverPAIN 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("FeverPAIN 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ FeverPAIN 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 FeverPAIN 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_feverpain_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ FeverPAIN 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server