Skip to main content
Glama

Medical Calculator MCP Service

api_test_wells_pe_calculator.py14.5 kB
import asyncio import os import sys from typing import Dict, Any from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL # noqa: E402 async def test_wells_pe_calculator(client: Client): """测试 Wells PE 计算器的各种功能和参数组合""" def print_header(): print("\n" + "=" * 60) print("Wells PE 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_calculation_result(data): """打印完整的计算结果""" wells_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- Wells PE 评分: {wells_value} {unit}") # 元数据信息 if metadata: heart_rate = metadata.get("heart_rate") risk_category = metadata.get("risk_category") if heart_rate is not None: print(f"- 心率: {heart_rate} bpm") if risk_category: print(f"- 风险分层: {risk_category}") # 显示阳性标准 positive_criteria = [] if metadata.get("clinical_dvt"): positive_criteria.append("临床DVT症状") if metadata.get("pe_number_one"): positive_criteria.append("PE为第一诊断") if metadata.get("heart_rate_over_100"): positive_criteria.append("心率>100") if metadata.get("immobilization_surgery"): positive_criteria.append("制动/手术史") if metadata.get("previous_pe_dvt"): positive_criteria.append("既往PE/DVT史") if metadata.get("hemoptysis"): positive_criteria.append("咯血") if metadata.get("malignancy"): positive_criteria.append("恶性肿瘤") if positive_criteria: print(f"- 阳性标准: {', '.join(positive_criteria)}") else: print(f"- 阳性标准: 无") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取显示) if explanation: print(f"- 解释: {explanation.strip()}") def print_validation_result(expected, actual): if expected == actual: status = "✅ 通过" else: status = "❌ 失败" print(f"- 验证结果: {status} (期望: {expected}, 实际: {actual})") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!Wells PE 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "心率参数验证", "多种临床条件组合", "Wells PE 风险分层", "低/中/高风险测试", "边界值测试", "错误处理", "临床解释生成", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases test_cases = [ { "name": "Wells PE 低风险 - 健康患者", "params": { "heart_rate": 75, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": False, "surgery_in_past4weeks": False, "previous_pe": False, "previous_dvt": False, "hemoptysis": False, "malignancy_with_treatment": False, }, "expected_value": 0.0, "expected_valid": True, "description": "心率75,无任何阳性标准,应为低风险", }, { "name": "Wells PE 低风险 - 单项心率>100", "params": { "heart_rate": 110, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": False, "surgery_in_past4weeks": False, "previous_pe": False, "previous_dvt": False, "hemoptysis": False, "malignancy_with_treatment": False, }, "expected_value": 1.5, "expected_valid": True, "description": "心率110,仅心率>100一项阳性 (+1.5分)", }, { "name": "Wells PE 低风险 - 咯血+恶性肿瘤", "params": { "heart_rate": 80, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": False, "surgery_in_past4weeks": False, "previous_pe": False, "previous_dvt": False, "hemoptysis": True, "malignancy_with_treatment": True, }, "expected_value": 2.0, "expected_valid": True, "description": "咯血(+1)+恶性肿瘤(+1) = 2分,边界低风险", }, { "name": "Wells PE 中风险 - 既往史+制动", "params": { "heart_rate": 85, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": True, "surgery_in_past4weeks": False, "previous_pe": True, "previous_dvt": False, "hemoptysis": False, "malignancy_with_treatment": False, }, "expected_value": 3.0, "expected_valid": True, "description": "制动(+1.5)+既往PE史(+1.5) = 3分,中风险", }, { "name": "Wells PE 中风险 - 手术史+心率+咯血", "params": { "heart_rate": 105, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": False, "surgery_in_past4weeks": True, "previous_pe": False, "previous_dvt": False, "hemoptysis": True, "malignancy_with_treatment": True, }, "expected_value": 5.0, "expected_valid": True, "description": "手术史(+1.5)+心率>100(+1.5)+咯血(+1)+恶性肿瘤(+1) = 5分,中风险", }, { "name": "Wells PE 高风险边界 - 6.5分", "params": { "heart_rate": 110, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": True, "surgery_in_past4weeks": False, "previous_pe": True, "previous_dvt": False, "hemoptysis": True, "malignancy_with_treatment": True, }, "expected_value": 6.5, "expected_valid": True, "description": "心率(+1.5)+制动(+1.5)+既往PE(+1.5)+咯血(+1)+恶性肿瘤(+1) = 6.5分,高风险边界", }, { "name": "Wells PE 高风险 - PE第一诊断", "params": { "heart_rate": 105, "clinical_dvt": False, "pe_number_one": True, "immobilization_for_3days": True, "surgery_in_past4weeks": False, "previous_pe": False, "previous_dvt": False, "hemoptysis": True, "malignancy_with_treatment": False, }, "expected_value": 7.0, "expected_valid": True, "description": "PE第一诊断(+3)+制动(+1.5)+心率>100(+1.5)+咯血(+1) = 7分,高风险", }, { "name": "Wells PE 高风险 - 临床DVT症状", "params": { "heart_rate": 120, "clinical_dvt": True, "pe_number_one": False, "immobilization_for_3days": False, "surgery_in_past4weeks": True, "previous_pe": True, "previous_dvt": False, "hemoptysis": False, "malignancy_with_treatment": True, }, "expected_value": 8.5, "expected_valid": True, "description": "临床DVT(+3)+心率>100(+1.5)+手术史(+1.5)+既往PE(+1.5)+恶性肿瘤(+1) = 8.5分,高风险", }, { "name": "Wells PE 最高风险 - 多项阳性", "params": { "heart_rate": 125, "clinical_dvt": True, "pe_number_one": True, "immobilization_for_3days": True, "surgery_in_past4weeks": False, "previous_pe": True, "previous_dvt": False, "hemoptysis": True, "malignancy_with_treatment": True, }, "expected_value": 12.5, "expected_valid": True, "description": "临床DVT(+3)+PE第一诊断(+3)+心率>100(+1.5)+制动(+1.5)+既往PE(+1.5)+咯血(+1)+恶性肿瘤(+1) = 12.5分,极高风险", }, { "name": "参数验证 - 无效心率", "params": { "heart_rate": 25, "clinical_dvt": False, "pe_number_one": False, "immobilization_for_3days": False, "surgery_in_past4weeks": False, "previous_pe": False, "previous_dvt": False, "hemoptysis": False, "malignancy_with_treatment": False, }, "expected_valid": False, "description": "无效心率(<30)", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test try: calc_result = await client.call_tool( "calculate", { "calculator_id": 8, "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False elif "expected_value" in test_case: actual_value = data.get("value") expected_value = test_case["expected_value"] if abs(float(actual_value) - expected_value) > 1e-6: test_passed = False print_validation_result(expected_value, actual_value) else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("Wells PE 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("Wells PE 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ Wells PE 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 Wells PE 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_wells_pe_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ Wells PE 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server