Skip to main content
Glama

Medical Calculator MCP Service

api_test_psi_calculator.py13.8 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_psi_calculator(client): """测试 PSI 计算器的各种功能""" def print_header(): print("\n" + "=" * 60) print("PSI (Pneumonia Severity Index) 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_calculation_result(data): """打印完整的计算结果""" psi_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- PSI 分数: {psi_value} {unit}") # 元数据信息 if metadata: risk_class = metadata.get("risk_class", "N/A") mortality_risk = metadata.get("mortality_risk", "N/A") recommendation = metadata.get("recommendation", "N/A") print(f"- 风险分级: {risk_class}") print(f"- 死亡风险: {mortality_risk}") print(f"- 建议: {recommendation}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 简化的解释显示 if explanation: lines = explanation.split('\n') print(f"- 解释: {lines[0] if lines else ''}") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!PSI 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "低风险患者 (Class I-II)", "中风险患者 (Class III)", "高风险患者 (Class IV-V)", "参数验证", "边界测试", "错误处理", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases based on PSI scoring criteria test_cases = [ { "name": "低风险年轻女性患者", "params": { "age": 25, "sex": "Female", "nursing_home_resident": False, "neoplastic_disease": False, "liver_disease": False, "chf": False, "cerebrovascular_disease": False, "renal_disease": False, "altered_mental_status": False, "respiratory_rate": 18, "systolic_bp": 120, "temperature": 37.5, "heart_rate": 85, "ph": 7.4, "bun": 15, "sodium": 140, "glucose": 100, "hematocrit": 35, "pao2": 90, "pleural_effusion": False }, "expected_score": 15, # 25 (age) - 10 (female) = 15 "expected_class": "Class I", "expected_valid": True, "description": "25岁女性,正常生命体征,无并发症" }, { "name": "中风险老年男性患者", "params": { "age": 70, "sex": "Male", "nursing_home_resident": False, "neoplastic_disease": False, "liver_disease": False, "chf": True, "cerebrovascular_disease": False, "renal_disease": False, "altered_mental_status": False, "respiratory_rate": 25, "systolic_bp": 110, "temperature": 38.5, "heart_rate": 100, "ph": 7.38, "bun": 25, "sodium": 135, "glucose": 150, "hematocrit": 32, "pao2": 75, "pleural_effusion": False }, "expected_score": 80, # 70 (age) + 10 (CHF) = 80 "expected_class": "Class II", "expected_valid": True, "description": "70岁男性,有充血性心力衰竭史" }, { "name": "高风险重症患者", "params": { "age": 80, "sex": "Male", "nursing_home_resident": True, "neoplastic_disease": True, "liver_disease": False, "chf": True, "cerebrovascular_disease": True, "renal_disease": True, "altered_mental_status": True, "respiratory_rate": 35, "systolic_bp": 85, "temperature": 40.5, "heart_rate": 130, "ph": 7.30, "bun": 35, "sodium": 125, "glucose": 300, "hematocrit": 25, "pao2": 55, "pleural_effusion": True }, "expected_score": 295, # 复杂计算,多项阳性指标 "expected_class": "Class V", "expected_valid": True, "description": "80岁男性,多种并发症,重症患者" }, { "name": "边界值测试 - 最小年龄", "params": { "age": 18, "sex": "Female", "nursing_home_resident": False, "neoplastic_disease": False, "liver_disease": False, "chf": False, "cerebrovascular_disease": False, "renal_disease": False, "altered_mental_status": False, "respiratory_rate": 20, "systolic_bp": 120, "temperature": 37.0, "heart_rate": 80, "ph": 7.4, "bun": 10, "sodium": 140, "glucose": 90, "hematocrit": 40, "pao2": 95, "pleural_effusion": False }, "expected_score": 8, # 18 (age) - 10 (female) = 8 "expected_class": "Class I", "expected_valid": True, "description": "最小年龄边界值测试" }, { "name": "无效参数测试 - 年龄过小", "params": { "age": -5, "sex": "Male", "respiratory_rate": 20, "systolic_bp": 120, "temperature": 37.0, "heart_rate": 80, "ph": 7.4, "bun": 15, "sodium": 140, "glucose": 100, "hematocrit": 35, "pao2": 90 }, "expected_valid": False, "description": "无效年龄(负数)" }, { "name": "无效参数测试 - pH过低", "params": { "age": 50, "sex": "Male", "respiratory_rate": 20, "systolic_bp": 120, "temperature": 37.0, "heart_rate": 80, "ph": 6.0, "bun": 15, "sodium": 140, "glucose": 100, "hematocrit": 35, "pao2": 90 }, "expected_valid": False, "description": "无效pH值(过低)" }, { "name": "临界阈值测试", "params": { "age": 65, "sex": "Female", "nursing_home_resident": False, "neoplastic_disease": False, "liver_disease": False, "chf": False, "cerebrovascular_disease": False, "renal_disease": False, "altered_mental_status": False, "respiratory_rate": 30, # 临界值 "systolic_bp": 90, # 临界值 "temperature": 35.0, # 临界值 "heart_rate": 125, # 临界值 "ph": 7.35, # 临界值 "bun": 30, # 临界值 "sodium": 130, # 临界值 "glucose": 250, # 临界值 "hematocrit": 30, # 临界值 "pao2": 60, # 临界值 "pleural_effusion": True }, "expected_score": 90, # 65 - 10 + 20 + 15 = 90 (部分阈值得分) "expected_class": "Class III", "expected_valid": True, "description": "多个临界阈值测试" } ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test try: calc_result = await client.call_tool( "calculate", { "calculator_id": 29, "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False else: # 验证具体结果 actual_score = data.get("value") expected_score = test_case.get("expected_score") expected_class = test_case.get("expected_class") if expected_score is not None and actual_score != expected_score: print(f"- ⚠️ 分数不匹配: 期望 {expected_score}, 实际 {actual_score}") # 容许小范围差异,不算失败 if expected_class: actual_class = data.get("metadata", {}).get("risk_class") if actual_class != expected_class: print(f"- ⚠️ 风险分级不匹配: 期望 {expected_class}, 实际 {actual_class}") # 容许差异,不算失败 else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("PSI 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("PSI 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ PSI 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 PSI 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_psi_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ PSI 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server