api_test_framingham_calculator.py•12.1 kB
import asyncio
import json
import sys
import os
from fastmcp import Client
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import MCP_SERVER_URL
async def test_framingham_calculator(client):
"""测试 Framingham 风险评分计算器的各种功能"""
def print_header():
print("\n" + "=" * 60)
print("Framingham 风险评分计算器测试套件")
print("=" * 60)
def print_test_case(i, test_case):
print(f"\n测试 {i:2d} | {test_case['name']}")
print(f"- {test_case['description']}")
print(f"- 输入参数: {test_case['params']}")
def print_validation_result(expected, actual, errors=None, warnings=None):
if expected == actual:
status = "✅ 通过"
else:
status = "❌ 失败"
expected_text = "有效" if expected else "无效"
actual_text = "有效" if actual else "无效"
print(f"- 验证结果: {status} (期望: {expected_text}, 实际: {actual_text})")
if errors:
print(f"- ⚠️ 错误: {errors}")
if warnings:
print(f"- ⚠️ 警告: {warnings}")
def print_calculation_result(data):
"""打印完整的计算结果"""
risk_percentage = data.get("value", "N/A")
unit = data.get("unit", "")
explanation = data.get("explanation", "")
metadata = data.get("metadata", {})
warnings = data.get("warnings", [])
# 基本结果
print(f"- 风险值: {risk_percentage}{unit}")
# 元数据信息
if metadata:
risk_score = metadata.get("risk_score")
risk_category = metadata.get("risk_category")
recommendation = metadata.get("recommendation")
risk_factors = metadata.get("risk_factors", {})
if risk_score is not None:
print(f"- 风险评分: {risk_score}")
if risk_category:
print(f"- 风险分类: {risk_category}")
if recommendation:
print(f"- 建议: {recommendation}")
# 显示风险因素
if risk_factors:
print("- 风险因素:")
for factor, value in risk_factors.items():
print(f" • {factor}: {value}")
# 警告信息
if warnings:
for warning in warnings:
print(f"- ⚠️ 警告: {warning}")
# 解释(截取前几行显示)
if explanation:
lines = explanation.split('\n')[:3]
print(f"- 解释摘要: {' '.join(lines).strip()}")
def print_test_result(i, passed):
if passed:
status = "✅ 通过"
else:
status = "❌ 失败"
print(f"- 测试结果: {status}")
print("-" * 60)
def print_summary(total, passed, failed):
print(f"\n测试总结:")
print(f" 总测试数: {total}")
print(f" 通过数: {passed}")
print(f" 失败数: {failed}")
print(f" 成功率: {(passed/total*100):.1f}%")
if failed == 0:
print("\n✅ 所有测试都通过了!Framingham 计算器工作正常。")
else:
print(f"\n❌ {failed} 个测试失败,请检查实现。")
print("\n测试覆盖范围:")
features = [
"男性和女性计算",
"多种年龄范围",
"不同胆固醇水平",
"血压和用药状态",
"吸烟和糖尿病状态",
"参数验证",
"边界测试",
"风险分层",
]
for feature in features:
print(f" - {feature}")
# Test statistics
total_tests = 0
passed_tests = 0
# Test cases
test_cases = [
{
"name": "低风险男性",
"params": {
"age": 45,
"sex": "Male",
"total_cholesterol": 180,
"hdl_cholesterol": 50,
"systolic_bp": 120,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": True,
"description": "45岁男性,胆固醇正常,无其他危险因素",
},
{
"name": "高风险女性",
"params": {
"age": 65,
"sex": "Female",
"total_cholesterol": 280,
"hdl_cholesterol": 35,
"systolic_bp": 160,
"bp_medication": True,
"smoker": True,
"diabetes": True
},
"expected_valid": True,
"description": "65岁女性,多个危险因素",
},
{
"name": "中等风险男性",
"params": {
"age": 55,
"sex": "Male",
"total_cholesterol": 220,
"hdl_cholesterol": 40,
"systolic_bp": 140,
"bp_medication": False,
"smoker": True,
"diabetes": False
},
"expected_valid": True,
"description": "55岁男性,吸烟者,胆固醇偏高",
},
{
"name": "年轻女性",
"params": {
"age": 35,
"sex": "Female",
"total_cholesterol": 160,
"hdl_cholesterol": 60,
"systolic_bp": 110,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": True,
"description": "35岁女性,低风险",
},
{
"name": "边界年龄(最小)",
"params": {
"age": 30,
"sex": "Male",
"total_cholesterol": 200,
"hdl_cholesterol": 45,
"systolic_bp": 130,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": True,
"description": "30岁男性(最小年龄)",
},
{
"name": "边界年龄(最大)",
"params": {
"age": 79,
"sex": "Female",
"total_cholesterol": 250,
"hdl_cholesterol": 40,
"systolic_bp": 150,
"bp_medication": True,
"smoker": False,
"diabetes": True
},
"expected_valid": True,
"description": "79岁女性(最大年龄)",
},
{
"name": "无效年龄(太小)",
"params": {
"age": 25,
"sex": "Male",
"total_cholesterol": 200,
"hdl_cholesterol": 45,
"systolic_bp": 130,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": False,
"description": "25岁(年龄过小)",
},
{
"name": "无效年龄(太大)",
"params": {
"age": 85,
"sex": "Male",
"total_cholesterol": 200,
"hdl_cholesterol": 45,
"systolic_bp": 130,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": False,
"description": "85岁(年龄过大)",
},
{
"name": "无效胆固醇(过低)",
"params": {
"age": 50,
"sex": "Male",
"total_cholesterol": 80,
"hdl_cholesterol": 45,
"systolic_bp": 130,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": False,
"description": "总胆固醇过低(80 mg/dL)",
},
{
"name": "无效血压(过低)",
"params": {
"age": 50,
"sex": "Male",
"total_cholesterol": 200,
"hdl_cholesterol": 45,
"systolic_bp": 80,
"bp_medication": False,
"smoker": False,
"diabetes": False
},
"expected_valid": False,
"description": "收缩压过低(80 mmHg)",
},
]
print_header()
# Execute test cases
for i, test_case in enumerate(test_cases, 1):
total_tests += 1
test_passed = True
print_test_case(i, test_case)
# Calculation test
try:
calc_result = await client.call_tool(
"calculate",
{
"calculator_id": 46,
"parameters": test_case["params"],
},
)
# 使用 structured_content 或 data 属性获取实际数据
calc_data = calc_result.structured_content or calc_result.data or {}
if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data:
# 成功计算
data = calc_data["result"]
print_calculation_result(data)
# 检查是否符合预期
if not test_case["expected_valid"]:
print("- 错误: 预期失败但计算成功")
test_passed = False
else:
# 计算失败(可能是参数验证失败)
error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data)
print(f"- 计算失败: {error_msg}")
# 检查是否符合预期
if test_case["expected_valid"]:
print("- 错误: 预期成功但计算失败")
test_passed = False
except Exception as e:
print(f"- 计算错误: {e}")
# 检查是否符合预期
if test_case["expected_valid"]:
test_passed = False
# Update statistics
if test_passed:
passed_tests += 1
print_test_result(i, test_passed)
print_summary(total_tests, passed_tests, total_tests - passed_tests)
return passed_tests, total_tests - passed_tests
async def main():
def print_header():
print("Framingham 风险评分计算器 MCP 测试")
print("=" * 60)
def print_connection_status(success, error=None):
if success:
print("✅ 成功连接到 MCP 服务器")
else:
print(f"❌ 连接失败: {error}")
def print_overall_results(total_passed, total_failed):
total_tests = total_passed + total_failed
if total_tests == 0:
return
print("\n" + "=" * 60)
print("Framingham 计算器测试结果")
print("=" * 60)
print(f"总测试数: {total_tests}")
print(f"通过数: {total_passed}")
print(f"失败数: {total_failed}")
print(f"成功率: {(total_passed/total_tests*100):.1f}%")
if total_failed == 0:
print("\n✅ Framingham 计算器所有测试都通过了!")
else:
print(f"\n❌ {total_failed} 个测试失败,请检查 Framingham 计算器实现。")
print_header()
try:
async with Client(MCP_SERVER_URL) as client:
print_connection_status(True)
passed, failed = await test_framingham_calculator(client)
print_overall_results(passed, failed)
except Exception as e:
print_connection_status(False, str(e))
import traceback
traceback.print_exc()
return
print("\n" + "=" * 60)
print("✅ Framingham 计算器测试完成")
if __name__ == "__main__":
asyncio.run(main())