Skip to main content
Glama

Medical Calculator MCP Service

api_test_ckd_epi_gfr_calculator.py12.2 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_ckd_epi_gfr_calculator(client): """测试 CKD-EPI GFR 计算器的各种功能和参数验证""" def print_header(): print("\n" + "=" * 60) print("CKD-EPI GFR 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_validation_result(expected, actual, errors=None, warnings=None): if expected == actual: status = "✅ 通过" else: status = "❌ 失败" expected_text = "有效" if expected else "无效" actual_text = "有效" if actual else "无效" print(f"- 验证结果: {status} (期望: {expected_text}, 实际: {actual_text})") if errors: print(f"- ⚠️ 错误: {errors}") if warnings: print(f"- ⚠️ 警告: {warnings}") def print_calculation_result(data): """打印完整的计算结果""" gfr_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- GFR 值: {gfr_value} {unit}") # 原始输入参数 if metadata: age = metadata.get("age") sex = metadata.get("sex") creatinine = metadata.get("creatinine") coefficient_a = metadata.get("coefficient_a") coefficient_b = metadata.get("coefficient_b") gender_coefficient = metadata.get("gender_coefficient") if age is not None: print(f"- 年龄: {age} years") if sex: print(f"- 性别: {sex}") if creatinine is not None: print(f"- 肌酐: {creatinine} mg/dL") if coefficient_a is not None: print(f"- 系数 A: {coefficient_a}") if coefficient_b is not None: print(f"- 系数 B: {coefficient_b}") if gender_coefficient is not None: print(f"- 性别系数: {gender_coefficient}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取前几行显示) if explanation: explanation_lines = explanation.strip().split('\n') if len(explanation_lines) > 5: print(f"- 解释: {explanation_lines[0]}...") else: print(f"- 解释: {explanation.strip()}") def print_test_result(i, passed, expected_gfr=None, actual_gfr=None): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") if expected_gfr is not None and actual_gfr is not None: print(f"- 期望 GFR: {expected_gfr}") print(f"- 实际 GFR: {actual_gfr}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!CKD-EPI GFR 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "年龄参数验证 (1-120 years)", "性别参数验证 (Male/Female)", "肌酐参数验证 (0.1-20.0 mg/dL)", "CKD-EPI 2021 公式计算", "男性和女性不同系数", "错误处理", "边界测试", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases based on real data from medcalc_train_testcase_s20.jsonl test_cases = [ { "name": "Male 38 years, creatinine 0.84", "params": {"age": 38, "sex": "Male", "creatinine": 0.84}, "expected_valid": True, "expected_gfr": 106.105, # From test data "description": "标准男性成年人,正常肌酐水平", }, { "name": "Female 52 years, creatinine 1.45", "params": {"age": 52, "sex": "Female", "creatinine": 1.45}, "expected_valid": True, "expected_gfr": 43.4, # From test data "description": "中年女性,轻度升高肌酐", }, { "name": "Male 77 years, creatinine 10.63", "params": {"age": 77, "sex": "Male", "creatinine": 10.63}, "expected_valid": True, "expected_gfr": 4.545, # From test data "description": "老年男性,严重肾功能不全", }, { "name": "Female 65 years, creatinine 1.2", "params": {"age": 65, "sex": "Female", "creatinine": 1.2}, "expected_valid": True, "expected_gfr": 50.235, # From test data "description": "老年女性,轻度肾功能下降", }, { "name": "Male 45 years, creatinine 2.6", "params": {"age": 45, "sex": "Male", "creatinine": 2.6}, "expected_valid": True, "expected_gfr": 30.051, # From test data "description": "中年男性,中度肾功能不全", }, { "name": "Female 60 years, creatinine 4.2", "params": {"age": 60, "sex": "Female", "creatinine": 4.2}, "expected_valid": True, "expected_gfr": 11.525, # From test data "description": "老年女性,重度肾功能不全", }, { "name": "Invalid age (negative)", "params": {"age": -5, "sex": "Male", "creatinine": 1.0}, "expected_valid": False, "description": "无效年龄(负数)", }, { "name": "Invalid age (too high)", "params": {"age": 150, "sex": "Female", "creatinine": 1.0}, "expected_valid": False, "description": "无效年龄(过高)", }, { "name": "Invalid sex", "params": {"age": 50, "sex": "Unknown", "creatinine": 1.0}, "expected_valid": False, "description": "无效性别", }, { "name": "Invalid creatinine (too low)", "params": {"age": 50, "sex": "Male", "creatinine": 0.05}, "expected_valid": False, "description": "无效肌酐(过低)", }, { "name": "Invalid creatinine (too high)", "params": {"age": 50, "sex": "Female", "creatinine": 25.0}, "expected_valid": False, "description": "无效肌酐(过高)", }, { "name": "Missing age parameter", "params": {"sex": "Male", "creatinine": 1.0}, "expected_valid": False, "description": "缺少年龄参数", }, { "name": "Missing sex parameter", "params": {"age": 50, "creatinine": 1.0}, "expected_valid": False, "description": "缺少性别参数", }, { "name": "Missing creatinine parameter", "params": {"age": 50, "sex": "Female"}, "expected_valid": False, "description": "缺少肌酐参数", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test (validation is included in calculate) try: calc_result = await client.call_tool( "calculate", { "calculator_id": 3, # CKD-EPI GFR Calculator ID "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False elif "expected_gfr" in test_case: # 检查计算结果是否在合理范围内(允许一定误差) actual_gfr = data.get("value") expected_gfr = test_case["expected_gfr"] if actual_gfr is not None: tolerance = expected_gfr * 0.05 # 5% tolerance if abs(actual_gfr - expected_gfr) > tolerance: print(f"- 警告: GFR 值差异较大 (期望: {expected_gfr}, 实际: {actual_gfr})") # 不算作失败,因为可能是公式差异 else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 expected_gfr = test_case.get("expected_gfr") print_test_result(i, test_passed, expected_gfr) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("CKD-EPI GFR 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("CKD-EPI GFR 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ CKD-EPI GFR 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 CKD-EPI GFR 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_ckd_epi_gfr_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ CKD-EPI GFR 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server