Skip to main content
Glama

Medical Calculator MCP Service

api_test_meld_na_calculator.py9.61 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_meld_na_calculator(client): """测试 MELD Na 计算器的各种功能""" def print_header(): print("\n" + "=" * 60) print("MELD Na 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_validation_result(expected, actual, errors=None, warnings=None): if expected == actual: status = "✅ 通过" else: status = "❌ 失败" expected_text = "有效" if expected else "无效" actual_text = "有效" if actual else "无效" print(f"- 验证结果: {status} (期望: {expected_text}, 实际: {actual_text})") if errors: print(f"- ⚠️ 错误: {errors}") if warnings: print(f"- ⚠️ 警告: {warnings}") def print_calculation_result(data): """打印完整的计算结果""" score = data.get("value", "N/A") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) # 基本结果 print(f"- MELD Na 评分: {score}") # 显示调整后的数值 if metadata: print(f"- 原始肌酐: {metadata.get('original_creatinine', 'N/A')} mg/dL") print(f"- 调整后肌酐: {metadata.get('adjusted_creatinine', 'N/A')} mg/dL") print(f"- 原始胆红素: {metadata.get('original_bilirubin', 'N/A')} mg/dL") print(f"- 调整后胆红素: {metadata.get('adjusted_bilirubin', 'N/A')} mg/dL") print(f"- 原始INR: {metadata.get('original_inr', 'N/A')}") print(f"- 调整后INR: {metadata.get('adjusted_inr', 'N/A')}") print(f"- 原始钠: {metadata.get('original_sodium', 'N/A')} mEq/L") print(f"- 调整后钠: {metadata.get('adjusted_sodium', 'N/A')} mEq/L") if metadata.get('dialysis_twice'): print(f"- 过去一周内透析≥2次: 是") if metadata.get('cvvhd'): print(f"- 过去24小时CVVHD: 是") print(f"- 严重程度: {metadata.get('severity', 'N/A')}") # 详细解释(显示前几行) if explanation: lines = explanation.strip().split('\n')[:5] print(f"- 解释: {lines[0]}") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!MELD Na 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "标准参数计算", "参数范围限制", "透析状态处理", "参数验证", "边界值测试", "错误处理", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases test_cases = [ { "name": "Normal values", "params": {"creatinine": 1.2, "bilirubin": 1.5, "inr": 1.3, "sodium": 140}, "expected_valid": True, "description": "正常数值计算", }, { "name": "High MELD score values", "params": {"creatinine": 3.5, "bilirubin": 8.0, "inr": 2.5, "sodium": 125}, "expected_valid": True, "description": "高MELD评分数值", }, { "name": "Low values with adjustments", "params": {"creatinine": 0.5, "bilirubin": 0.3, "inr": 0.8, "sodium": 120}, "expected_valid": True, "description": "低数值(需调整)", }, { "name": "High sodium (capped)", "params": {"creatinine": 2.0, "bilirubin": 3.0, "inr": 1.8, "sodium": 145}, "expected_valid": True, "description": "高钠数值(需限制)", }, { "name": "With dialysis history", "params": {"creatinine": 2.0, "bilirubin": 2.0, "inr": 1.5, "sodium": 135, "dialysis_twice": True}, "expected_valid": True, "description": "有透析史", }, { "name": "With CVVHD", "params": {"creatinine": 1.5, "bilirubin": 4.0, "inr": 2.0, "sodium": 130, "cvvhd": True}, "expected_valid": True, "description": "有CVVHD史", }, { "name": "Very high creatinine", "params": {"creatinine": 8.0, "bilirubin": 5.0, "inr": 3.0, "sodium": 128}, "expected_valid": True, "description": "极高肌酐(需限制到4.0)", }, { "name": "Missing creatinine", "params": {"bilirubin": 2.0, "inr": 1.5, "sodium": 135}, "expected_valid": False, "description": "缺少肌酐参数", }, { "name": "Invalid negative creatinine", "params": {"creatinine": -1.0, "bilirubin": 2.0, "inr": 1.5, "sodium": 135}, "expected_valid": False, "description": "无效负数肌酐", }, { "name": "Invalid zero bilirubin", "params": {"creatinine": 1.5, "bilirubin": 0, "inr": 1.5, "sodium": 135}, "expected_valid": False, "description": "无效零胆红素", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test (validation is included in calculate) try: calc_result = await client.call_tool( "calculate", { "calculator_id": 23, "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("MELD Na 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("MELD Na 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ MELD Na 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 MELD Na 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_meld_na_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ MELD Na 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server