Skip to main content
Glama

Medical Calculator MCP Service

api_test_mdrd_gfr_calculator.py11.4 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_mdrd_gfr_calculator(client): """测试 MDRD GFR 计算器的各种功能""" def print_header(): print("\n" + "=" * 60) print("MDRD GFR 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") if 'expected_value' in test_case: print(f"- 期望GFR值: {test_case['expected_value']} mL/min/1.73m²") def print_calculation_result(data): """打印完整的计算结果""" gfr_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- GFR 值: {gfr_value} {unit}") # 原始输入和转换后的值 if metadata: age = metadata.get("age") sex = metadata.get("sex") creatinine = metadata.get("creatinine") race = metadata.get("race", "Non-Black") race_coefficient = metadata.get("race_coefficient", 1.0) gender_coefficient = metadata.get("gender_coefficient", 1.0) formula = metadata.get("formula", "") if age: print(f"- 年龄: {age} 岁") if sex: print(f"- 性别: {sex}") if creatinine: print(f"- 肌酐: {creatinine} mg/dL") if race: print(f"- 种族: {race} (系数: {race_coefficient})") print(f"- 性别系数: {gender_coefficient}") if formula: print(f"- 公式: {formula}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 解释信息(截取前几行显示) if explanation: lines = explanation.split('\n')[:3] print(f"- 解释: {lines[0] if lines else explanation}") def print_test_result(i, passed, expected_value=None, actual_value=None): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") if expected_value and actual_value: print(f"- 期望值: {expected_value}, 实际值: {actual_value}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!MDRD GFR 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "年龄参数验证 (18-120岁)", "肌酐参数验证 (0.1-20.0 mg/dL)", "性别参数 (Male/Female)", "种族参数 (Black/Non-Black)", "MDRD 公式计算", "边界值测试", "错误处理", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases based on the data found test_cases = [ { "name": "年轻女性标准测试", "params": {"age": 30, "sex": "Female", "creatinine": 0.55}, "expected_valid": True, "expected_value": 129.78, "description": "30岁女性,肌酐0.55mg/dL", }, { "name": "年轻女性亚洲人种", "params": {"age": 21, "sex": "Female", "creatinine": 0.86, "race": "Non-Black"}, "expected_valid": True, "expected_value": 83.295, "description": "21岁女性,肌酐0.86mg/dL,亚洲人种", }, { "name": "中年男性标准测试", "params": {"age": 38, "sex": "Male", "creatinine": 0.84}, "expected_valid": True, "expected_value": 102.264, "description": "38岁男性,肌酐0.84mg/dL", }, { "name": "老年男性高肌酐", "params": {"age": 75, "sex": "Male", "creatinine": 5.8}, "expected_valid": True, "expected_value": 9.581, "description": "75岁男性,肌酐5.8mg/dL", }, { "name": "中年男性高肌酐", "params": {"age": 50, "sex": "Male", "creatinine": 3.0}, "expected_valid": True, "expected_value": 22.261, "description": "50岁男性,肌酐3.0mg/dL", }, { "name": "老年女性高肌酐", "params": {"age": 66, "sex": "Female", "creatinine": 2.3}, "expected_valid": True, "expected_value": 21.215, "description": "66岁女性,肌酐2.3mg/dL", }, { "name": "黑人男性测试", "params": {"age": 56, "sex": "Male", "creatinine": 5.22, "race": "Black"}, "expected_valid": True, "expected_value": 13.914, "description": "56岁黑人男性,肌酐5.22mg/dL", }, { "name": "中年女性正常肌酐", "params": {"age": 55, "sex": "Female", "creatinine": 0.9}, "expected_valid": True, "expected_value": 65.006, "description": "55岁女性,肌酐0.9mg/dL", }, { "name": "年龄过低(无效)", "params": {"age": 17, "sex": "Male", "creatinine": 1.0}, "expected_valid": False, "description": "17岁(低于最小年龄18岁)", }, { "name": "年龄过高(无效)", "params": {"age": 121, "sex": "Female", "creatinine": 1.0}, "expected_valid": False, "description": "121岁(高于最大年龄120岁)", }, { "name": "肌酐过低(无效)", "params": {"age": 30, "sex": "Male", "creatinine": 0.05}, "expected_valid": False, "description": "肌酐0.05mg/dL(低于最小值0.1)", }, { "name": "肌酐过高(无效)", "params": {"age": 30, "sex": "Male", "creatinine": 25.0}, "expected_valid": False, "description": "肌酐25.0mg/dL(高于最大值20.0)", }, { "name": "性别无效", "params": {"age": 30, "sex": "Other", "creatinine": 1.0}, "expected_valid": False, "description": "无效性别参数", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test try: calc_result = await client.call_tool( "calculate", { "calculator_id": 9, # MDRD GFR calculator ID "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False # 如果有期望值,检查计算结果的准确性 if test_case.get("expected_value") and test_case["expected_valid"]: actual_value = data.get("value") expected_value = test_case["expected_value"] if actual_value is not None: # 允许5%的误差 tolerance = abs(expected_value * 0.05) if abs(actual_value - expected_value) > tolerance: print(f"- 警告: 计算值偏差较大 (期望: {expected_value}, 实际: {actual_value})") # 对于数值偏差,我们只警告但不标记为失败,因为可能是精度问题 else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed, test_case.get("expected_value"), None) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("MDRD GFR 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("MDRD GFR 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ MDRD GFR 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 MDRD GFR 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_mdrd_gfr_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ MDRD GFR 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server