Skip to main content
Glama

Medical Calculator MCP Service

api_test_apache_ii_calculator.py15.5 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_apache_ii_calculator(client): """测试 APACHE II 计算器的各种功能和参数验证""" def print_header(): print("\n" + "=" * 60) print("APACHE II 评分计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_validation_result(expected, actual, errors=None, warnings=None): if expected == actual: status = "✅ 通过" else: status = "❌ 失败" expected_text = "有效" if expected else "无效" actual_text = "有效" if actual else "无效" print(f"- 验证结果: {status} (期望: {expected_text}, 实际: {actual_text})") if errors: print(f"- ⚠️ 错误: {errors}") if warnings: print(f"- ⚠️ 警告: {warnings}") def print_calculation_result(data): """打印完整的计算结果""" apache_ii_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- APACHE II 评分: {apache_ii_value} {unit}") # 风险分类 if metadata: risk_category = metadata.get("risk_category", "N/A") mortality_risk = metadata.get("mortality_risk", "N/A") print(f"- 风险分类: {risk_category}") print(f"- 预计死亡率: {mortality_risk}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取前几行显示) if explanation: lines = explanation.split('\n')[:5] # 显示前5行 print(f"- 解释: {lines[0]}") if len(lines) > 1: print(f" (... 共 {len(explanation.split())} 行详细计算)") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!APACHE II 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "低风险患者评估", "中风险患者评估", "高风险患者评估", "极高风险患者评估", "FiO2 < 50% (使用 PaO2)", "FiO2 >= 50% (使用 A-a 梯度)", "急性肾功能衰竭", "慢性肾功能衰竭", "器官衰竭/免疫缺陷史", "手术类型分类", "参数验证", "边界值测试", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases covering different risk levels and edge cases test_cases = [ { "name": "Low risk patient", "params": { "age": 35, "temperature": 37.0, "systolic_bp": 120, "diastolic_bp": 80, "heart_rate": 75, "respiratory_rate": 16, "fio2": 21, "pao2": 95, "ph": 7.4, "sodium": 140, "potassium": 4.0, "creatinine": 1.0, "hematocrit": 40, "wbc": 8.0, "gcs": 15, "acute_renal_failure": False, "chronic_renal_failure": False, "organ_failure_immunocompromise": False, "surgery_type": "none" }, "expected_valid": True, "description": "低风险患者 - 正常生理参数", }, { "name": "Moderate risk patient", "params": { "age": 65, "temperature": 38.5, "systolic_bp": 90, "diastolic_bp": 60, "heart_rate": 110, "respiratory_rate": 26, "fio2": 40, "pao2": 65, "ph": 7.3, "sodium": 135, "potassium": 3.2, "creatinine": 1.8, "hematocrit": 32, "wbc": 15.0, "gcs": 13, "acute_renal_failure": False, "chronic_renal_failure": False, "organ_failure_immunocompromise": False, "surgery_type": "none" }, "expected_valid": True, "description": "中风险患者 - 轻度异常生理参数", }, { "name": "High risk patient", "params": { "age": 75, "temperature": 35.0, "systolic_bp": 70, "diastolic_bp": 45, "heart_rate": 150, "respiratory_rate": 35, "fio2": 60, "aa_gradient": 350, "ph": 7.2, "sodium": 125, "potassium": 5.8, "creatinine": 2.5, "hematocrit": 25, "wbc": 25.0, "gcs": 10, "acute_renal_failure": True, "chronic_renal_failure": False, "organ_failure_immunocompromise": True, "surgery_type": "emergency" }, "expected_valid": True, "description": "高风险患者 - 严重异常生理参数", }, { "name": "Very high risk patient", "params": { "age": 85, "temperature": 32.0, "systolic_bp": 60, "diastolic_bp": 35, "heart_rate": 180, "respiratory_rate": 50, "fio2": 80, "aa_gradient": 500, "ph": 7.1, "sodium": 115, "potassium": 6.5, "creatinine": 4.0, "hematocrit": 18, "wbc": 35.0, "gcs": 6, "acute_renal_failure": True, "chronic_renal_failure": False, "organ_failure_immunocompromise": True, "surgery_type": "emergency" }, "expected_valid": True, "description": "极高风险患者 - 极度异常生理参数", }, { "name": "Patient with chronic renal failure", "params": { "age": 60, "temperature": 37.5, "systolic_bp": 100, "diastolic_bp": 70, "heart_rate": 85, "respiratory_rate": 20, "fio2": 30, "pao2": 80, "ph": 7.35, "sodium": 138, "potassium": 4.5, "creatinine": 3.0, "hematocrit": 35, "wbc": 10.0, "gcs": 14, "acute_renal_failure": False, "chronic_renal_failure": True, "organ_failure_immunocompromise": True, "surgery_type": "elective" }, "expected_valid": True, "description": "慢性肾功能衰竭患者", }, { "name": "Patient requiring high FiO2", "params": { "age": 55, "temperature": 39.0, "systolic_bp": 95, "diastolic_bp": 65, "heart_rate": 120, "respiratory_rate": 30, "fio2": 70, "aa_gradient": 300, "ph": 7.25, "sodium": 130, "potassium": 5.2, "creatinine": 1.5, "hematocrit": 30, "wbc": 18.0, "gcs": 12, "acute_renal_failure": False, "chronic_renal_failure": False, "organ_failure_immunocompromise": False, "surgery_type": "none" }, "expected_valid": True, "description": "高氧浓度需求患者 (FiO2 >= 50%)", }, { "name": "Invalid: Missing PaO2 for low FiO2", "params": { "age": 45, "temperature": 37.0, "systolic_bp": 120, "diastolic_bp": 80, "heart_rate": 75, "respiratory_rate": 16, "fio2": 30, "ph": 7.4, "sodium": 140, "potassium": 4.0, "creatinine": 1.0, "hematocrit": 40, "wbc": 8.0, "gcs": 15 }, "expected_valid": False, "description": "无效:FiO2 < 50% 但缺少 PaO2 参数", }, { "name": "Invalid: Missing A-a gradient for high FiO2", "params": { "age": 45, "temperature": 37.0, "systolic_bp": 120, "diastolic_bp": 80, "heart_rate": 75, "respiratory_rate": 16, "fio2": 60, "ph": 7.4, "sodium": 140, "potassium": 4.0, "creatinine": 1.0, "hematocrit": 40, "wbc": 8.0, "gcs": 15 }, "expected_valid": False, "description": "无效:FiO2 >= 50% 但缺少 A-a 梯度参数", }, { "name": "Invalid: Both acute and chronic renal failure", "params": { "age": 60, "temperature": 37.0, "systolic_bp": 120, "diastolic_bp": 80, "heart_rate": 75, "respiratory_rate": 16, "fio2": 25, "pao2": 90, "ph": 7.4, "sodium": 140, "potassium": 4.0, "creatinine": 2.0, "hematocrit": 40, "wbc": 8.0, "gcs": 15, "acute_renal_failure": True, "chronic_renal_failure": True }, "expected_valid": False, "description": "无效:同时有急性和慢性肾功能衰竭", }, { "name": "Invalid: Out of range parameters", "params": { "age": 150, # 超出范围 "temperature": 50, # 超出范围 "systolic_bp": 400, # 超出范围 "diastolic_bp": 80, "heart_rate": 75, "respiratory_rate": 16, "fio2": 25, "pao2": 90, "ph": 7.4, "sodium": 140, "potassium": 4.0, "creatinine": 1.0, "hematocrit": 40, "wbc": 8.0, "gcs": 15 }, "expected_valid": False, "description": "无效:参数超出正常范围", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test (validation is included in calculate) try: calc_result = await client.call_tool( "calculate", { "calculator_id": 28, # APACHE II calculator ID "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("APACHE II 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("APACHE II 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ APACHE II 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 APACHE II 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_apache_ii_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ APACHE II 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server