api_test_cardiac_risk_index_calculator.py•12.4 kB
# -*- coding: utf-8 -*-
import asyncio
import json
import sys
import os
from fastmcp import Client
# Set UTF-8 encoding for output
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from config import MCP_SERVER_URL
async def test_cardiac_risk_index_calculator(client):
"""测试 Revised Cardiac Risk Index 计算器的各种功能"""
def print_header():
print("\n" + "=" * 60)
print("Revised Cardiac Risk Index 计算器测试套件")
print("=" * 60)
def print_test_case(i, test_case):
print(f"\n测试 {i:2d} | {test_case['name']}")
print(f"- {test_case['description']}")
print(f"- 输入参数: {test_case['params']}")
def print_calculation_result(data):
"""打印完整的计算结果"""
score = data.get("value", "N/A")
unit = data.get("unit", "")
explanation = data.get("explanation", "")
metadata = data.get("metadata", {})
warnings = data.get("warnings", [])
# 基本结果
print(f"- RCRI 分数: {score} {unit}")
# 风险分类
if metadata:
risk_category = metadata.get("risk_category", "N/A")
criteria_met = metadata.get("criteria_met", {})
print(f"- 风险分类: {risk_category}")
# 显示满足的标准
print("- 满足的标准:")
for criterion, met in criteria_met.items():
status = "是" if met else "否"
print(f" - {criterion}: {status}")
# 警告信息
if warnings:
for warning in warnings:
print(f"- ⚠️ 警告: {warning}")
# 详细解释(截取前几行显示)
if explanation:
explanation_lines = explanation.split('\n')[:5]
print(f"- 解释: {explanation_lines[0][:100]}..." if len(explanation_lines[0]) > 100 else explanation_lines[0])
def print_test_result(i, passed):
if passed:
status = "✅ 通过"
else:
status = "❌ 失败"
print(f"- 测试结果: {status}")
print("-" * 60)
def print_summary(total, passed, failed):
print(f"\n测试总结:")
print(f" 总测试数: {total}")
print(f" 通过数: {passed}")
print(f" 失败数: {failed}")
print(f" 成功率: {(passed/total*100):.1f}%")
if failed == 0:
print("\n✅ 所有测试都通过了!Revised Cardiac Risk Index 计算器工作正常。")
else:
print(f"\n❌ {failed} 个测试失败,请检查实现。")
print("\n测试覆盖范围:")
features = [
"不同风险因子组合",
"肌酐水平变化",
"边界值测试",
"参数验证",
"风险分层",
"错误处理",
]
for feature in features:
print(f" - {feature}")
# Test statistics
total_tests = 0
passed_tests = 0
# Test cases
test_cases = [
{
"name": "最低风险 (无风险因子)",
"params": {
"elevated_risk_surgery": False,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 1.0
},
"expected_valid": True,
"expected_score": 0,
"description": "所有风险因子为假,肌酐正常",
},
{
"name": "单一风险因子 - 高风险手术",
"params": {
"elevated_risk_surgery": True,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 1.5
},
"expected_valid": True,
"expected_score": 1,
"description": "仅高风险手术为真",
},
{
"name": "单一风险因子 - 肌酐升高",
"params": {
"elevated_risk_surgery": False,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 2.5
},
"expected_valid": True,
"expected_score": 1,
"description": "仅肌酐>2.0 mg/dL",
},
{
"name": "多个风险因子",
"params": {
"elevated_risk_surgery": True,
"ischemic_heart_disease": True,
"congestive_heart_failure": False,
"cerebrovascular_disease": True,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 1.8
},
"expected_valid": True,
"expected_score": 3,
"description": "3个风险因子为真",
},
{
"name": "所有风险因子",
"params": {
"elevated_risk_surgery": True,
"ischemic_heart_disease": True,
"congestive_heart_failure": True,
"cerebrovascular_disease": True,
"pre_operative_insulin_treatment": True,
"pre_operative_creatinine": 3.0
},
"expected_valid": True,
"expected_score": 6,
"description": "所有风险因子为真",
},
{
"name": "肌酐边界值 - 正好2.0",
"params": {
"elevated_risk_surgery": False,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 2.0
},
"expected_valid": True,
"expected_score": 0,
"description": "肌酐正好2.0 mg/dL (不应加分)",
},
{
"name": "肌酐边界值 - 刚超过2.0",
"params": {
"elevated_risk_surgery": False,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 2.1
},
"expected_valid": True,
"expected_score": 1,
"description": "肌酐2.1 mg/dL (应加分)",
},
{
"name": "无效肌酐 - 负值",
"params": {
"elevated_risk_surgery": False,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": -1.0
},
"expected_valid": False,
"description": "肌酐为负值 (应失败)",
},
{
"name": "无效肌酐 - 过高",
"params": {
"elevated_risk_surgery": False,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 25.0
},
"expected_valid": False,
"description": "肌酐过高 (应失败)",
},
{
"name": "极值测试 - 最高肌酐",
"params": {
"elevated_risk_surgery": True,
"ischemic_heart_disease": False,
"congestive_heart_failure": False,
"cerebrovascular_disease": False,
"pre_operative_insulin_treatment": False,
"pre_operative_creatinine": 20.0
},
"expected_valid": True,
"expected_score": 2,
"description": "最高允许肌酐值",
},
]
print_header()
# Execute test cases
for i, test_case in enumerate(test_cases, 1):
total_tests += 1
test_passed = True
print_test_case(i, test_case)
# Calculation test
try:
calc_result = await client.call_tool(
"calculate",
{
"calculator_id": 17,
"parameters": test_case["params"],
},
)
# 使用 structured_content 或 data 属性获取实际数据
calc_data = calc_result.structured_content or calc_result.data or {}
if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data:
# 成功计算
data = calc_data["result"]
print_calculation_result(data)
# 检查是否符合预期
if not test_case["expected_valid"]:
print("- 错误: 预期失败但计算成功")
test_passed = False
elif "expected_score" in test_case:
actual_score = data.get("value")
expected_score = test_case["expected_score"]
if actual_score != expected_score:
print(f"- 错误: 分数不匹配 (期望: {expected_score}, 实际: {actual_score})")
test_passed = False
else:
# 计算失败(可能是参数验证失败)
error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data)
print(f"- 计算失败: {error_msg}")
# 检查是否符合预期
if test_case["expected_valid"]:
print("- 错误: 预期成功但计算失败")
test_passed = False
except Exception as e:
print(f"- 计算错误: {e}")
# 检查是否符合预期
if test_case["expected_valid"]:
test_passed = False
# Update statistics
if test_passed:
passed_tests += 1
print_test_result(i, test_passed)
print_summary(total_tests, passed_tests, total_tests - passed_tests)
return passed_tests, total_tests - passed_tests
async def main():
def print_header():
print("Revised Cardiac Risk Index 计算器 MCP 测试")
print("=" * 60)
def print_connection_status(success, error=None):
if success:
print("✅ 成功连接到 MCP 服务器")
else:
print(f"❌ 连接失败: {error}")
def print_overall_results(total_passed, total_failed):
total_tests = total_passed + total_failed
if total_tests == 0:
return
print("\n" + "=" * 60)
print("Revised Cardiac Risk Index 计算器测试结果")
print("=" * 60)
print(f"总测试数: {total_tests}")
print(f"通过数: {total_passed}")
print(f"失败数: {total_failed}")
print(f"成功率: {(total_passed/total_tests*100):.1f}%")
if total_failed == 0:
print("\n✅ Revised Cardiac Risk Index 计算器所有测试都通过了!")
else:
print(f"\n❌ {total_failed} 个测试失败,请检查 Revised Cardiac Risk Index 计算器实现。")
print_header()
try:
async with Client(MCP_SERVER_URL) as client:
print_connection_status(True)
passed, failed = await test_cardiac_risk_index_calculator(client)
print_overall_results(passed, failed)
except Exception as e:
print_connection_status(False, str(e))
import traceback
traceback.print_exc()
return
print("\n" + "=" * 60)
print("✅ Revised Cardiac Risk Index 计算器测试完成")
if __name__ == "__main__":
asyncio.run(main())