Skip to main content
Glama

Medical Calculator MCP Service

api_test_bmi_calculator.py9.26 kB
import asyncio import json import sys import os from fastmcp import Client sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config import MCP_SERVER_URL async def test_bmi_calculator(client): """测试 BMI 计算器的各种功能和单位转换""" def print_header(): print("\n" + "=" * 60) print("BMI 计算器测试套件") print("=" * 60) def print_test_case(i, test_case): print(f"\n测试 {i:2d} | {test_case['name']}") print(f"- {test_case['description']}") print(f"- 输入参数: {test_case['params']}") def print_validation_result(expected, actual, errors=None, warnings=None): if expected == actual: status = "✅ 通过" else: status = "❌ 失败" expected_text = "有效" if expected else "无效" actual_text = "有效" if actual else "无效" print(f"- 验证结果: {status} (期望: {expected_text}, 实际: {actual_text})") if errors: print(f"- ⚠️ 错误: {errors}") if warnings: print(f"- ⚠️ 警告: {warnings}") def print_calculation_result(data): """打印完整的计算结果""" bmi_value = data.get("value", "N/A") unit = data.get("unit", "") explanation = data.get("explanation", "") metadata = data.get("metadata", {}) warnings = data.get("warnings", []) # 基本结果 print(f"- BMI 值: {bmi_value} {unit}") # 原始输入和转换后的值 if metadata: original_height = metadata.get("original_height") height_unit = metadata.get("height_unit") original_weight = metadata.get("original_weight") weight_unit = metadata.get("weight_unit") height_m = metadata.get("height_m") weight_kg = metadata.get("weight_kg") category = metadata.get("category", "N/A") if original_height and height_unit: print(f"- 输入身高: {original_height} {height_unit} (转换为: {height_m:.2f} m)") if original_weight and weight_unit: print(f"- 输入体重: {original_weight} {weight_unit} (转换为: {weight_kg:.1f} kg)") if category: print(f"- 类型: {category}") # 警告信息 if warnings: for warning in warnings: print(f"- ⚠️ 警告: {warning}") # 详细解释(截取前几行显示) if explanation: print(f"- 解释: {[explanation.strip()]}") def print_test_result(i, passed): if passed: status = "✅ 通过" else: status = "❌ 失败" print(f"- 测试结果: {status}") print("-" * 60) def print_summary(total, passed, failed): print(f"\n测试总结:") print(f" 总测试数: {total}") print(f" 通过数: {passed}") print(f" 失败数: {failed}") print(f" 成功率: {(passed/total*100):.1f}%") if failed == 0: print("\n✅ 所有测试都通过了!BMI 计算器工作正常。") else: print(f"\n❌ {failed} 个测试失败,请检查实现。") print("\n测试覆盖范围:") features = [ "多种身高单位 (cm, m, ft, in)", "多种体重单位 (kg, g, lb, lbs, oz)", "自动单位转换", "参数验证", "BMI 分类", "错误处理", "边界测试", ] for feature in features: print(f" - {feature}") # Test statistics total_tests = 0 passed_tests = 0 # Test cases test_cases = [ { "name": "Standard units (cm, kg)", "params": {"height": "175cm", "weight": "70kg"}, "expected_valid": True, "description": "标准单位计算 (175cm, 70kg)", }, { "name": "Imperial units (ft, lbs)", "params": {"height": "5.75ft", "weight": "154lbs"}, "expected_valid": True, "description": "英制单位计算 (5.75ft, 154lbs)", }, { "name": "Mixed units (in, kg)", "params": {"height": "69in", "weight": "70kg"}, "expected_valid": True, "description": "混合单位计算 (69in, 70kg)", }, { "name": "Meters and grams", "params": {"height": "1.75m", "weight": "70000g"}, "expected_valid": True, "description": "米和克单位 (1.75m, 70000g)", }, { "name": "Feet and inches with pounds", "params": {"height": "5ft 9in", "weight": "154lb"}, "expected_valid": True, "description": "英尺英寸和磅 (5ft 9in, 154lb)", }, { "name": "Invalid height (negative)", "params": {"height": "-10cm", "weight": "70kg"}, "expected_valid": False, "description": "无效身高(负数)", }, { "name": "Invalid weight (zero)", "params": {"height": "175cm", "weight": "0kg"}, "expected_valid": False, "description": "无效体重(零)", }, { "name": "Extreme values (very tall)", "params": {"height": "250cm", "weight": "100kg"}, "expected_valid": True, "description": "极值测试(很高)", }, { "name": "Extreme values (very short)", "params": {"height": "100cm", "weight": "30kg"}, "expected_valid": True, "description": "极值测试(很矮)", }, ] print_header() # Execute test cases for i, test_case in enumerate(test_cases, 1): total_tests += 1 test_passed = True print_test_case(i, test_case) # Calculation test (validation is included in calculate) try: calc_result = await client.call_tool( "calculate", { "calculator_id": 6, "parameters": test_case["params"], }, ) # 使用 structured_content 或 data 属性获取实际数据 calc_data = calc_result.structured_content or calc_result.data or {} if isinstance(calc_data, dict) and calc_data.get("success") and "result" in calc_data: # 成功计算 data = calc_data["result"] print_calculation_result(data) # 检查是否符合预期 if not test_case["expected_valid"]: print("- 错误: 预期失败但计算成功") test_passed = False else: # 计算失败(可能是参数验证失败) error_msg = calc_data.get("error", "未知错误") if isinstance(calc_data, dict) else str(calc_data) print(f"- 计算失败: {error_msg}") # 检查是否符合预期 if test_case["expected_valid"]: print("- 错误: 预期成功但计算失败") test_passed = False except Exception as e: print(f"- 计算错误: {e}") # 检查是否符合预期 if test_case["expected_valid"]: test_passed = False # Update statistics if test_passed: passed_tests += 1 print_test_result(i, test_passed) print_summary(total_tests, passed_tests, total_tests - passed_tests) return passed_tests, total_tests - passed_tests async def main(): def print_header(): print("BMI 计算器 MCP 测试") print("=" * 60) def print_connection_status(success, error=None): if success: print("✅ 成功连接到 MCP 服务器") else: print(f"❌ 连接失败: {error}") def print_overall_results(total_passed, total_failed): total_tests = total_passed + total_failed if total_tests == 0: return print("\n" + "=" * 60) print("BMI 计算器测试结果") print("=" * 60) print(f"总测试数: {total_tests}") print(f"通过数: {total_passed}") print(f"失败数: {total_failed}") print(f"成功率: {(total_passed/total_tests*100):.1f}%") if total_failed == 0: print("\n✅ BMI 计算器所有测试都通过了!") else: print(f"\n❌ {total_failed} 个测试失败,请检查 BMI 计算器实现。") print_header() try: async with Client(MCP_SERVER_URL) as client: print_connection_status(True) passed, failed = await test_bmi_calculator(client) print_overall_results(passed, failed) except Exception as e: print_connection_status(False, str(e)) import traceback traceback.print_exc() return print("\n" + "=" * 60) print("✅ BMI 计算器测试完成") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/winninghealth/medcalcmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server