Skip to main content
Glama
JLKmach

ServiceNow MCP Server

by JLKmach

update_epic

Modify existing ServiceNow epics by updating descriptions, priority, state, assignments, or adding work notes to track project progress.

Instructions

Update an existing epic in ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
epic_idYesEpic ID or sys_id
short_descriptionNoShort description of the epic
descriptionNoDetailed description of the epic
priorityNoPriority of epic (1 is Critical, 2 is High, 3 is Moderate, 4 is Low, 5 is Planning)
stateNoState of story (-6 is Draft,1 is Ready,2 is Work in progress, 3 is Complete, 4 is Cancelled)
assignment_groupNoGroup assigned to the epic
assigned_toNoUser assigned to the epic
work_notesNoWork notes to add to the epic. Used for adding notes and comments to an epic

Implementation Reference

  • The main handler function that implements the logic for the 'update_epic' tool. It validates input parameters using UpdateEpicParams, constructs the API request to update the epic in ServiceNow's rm_epic table, and returns the result.
    def update_epic( auth_manager: AuthManager, server_config: ServerConfig, params: Dict[str, Any], ) -> Dict[str, Any]: """ Update an existing epic in ServiceNow. Args: auth_manager: The authentication manager. server_config: The server configuration. params: The parameters for updating the epic. Returns: The updated epic. """ # Unwrap and validate parameters result = _unwrap_and_validate_params( params, UpdateEpicParams, required_fields=["epic_id"] ) if not result["success"]: return result validated_params = result["params"] # Prepare the request data data = {} # Add optional fields if provided if validated_params.short_description: data["short_description"] = validated_params.short_description if validated_params.description: data["description"] = validated_params.description if validated_params.priority: data["priority"] = validated_params.priority if validated_params.assignment_group: data["assignment_group"] = validated_params.assignment_group if validated_params.assigned_to: data["assigned_to"] = validated_params.assigned_to if validated_params.work_notes: data["work_notes"] = validated_params.work_notes # Get the instance URL instance_url = _get_instance_url(auth_manager, server_config) if not instance_url: return { "success": False, "message": "Cannot find instance_url in either server_config or auth_manager", } # Get the headers headers = _get_headers(auth_manager, server_config) if not headers: return { "success": False, "message": "Cannot find get_headers method in either auth_manager or server_config", } # Add Content-Type header headers["Content-Type"] = "application/json" # Make the API request url = f"{instance_url}/api/now/table/rm_epic/{validated_params.epic_id}" try: response = requests.put(url, json=data, headers=headers) response.raise_for_status() result = response.json() return { "success": True, "message": "Epic updated successfully", "epic": result["result"], } except requests.exceptions.RequestException as e: logger.error(f"Error updating epic: {e}") return { "success": False, "message": f"Error updating epic: {str(e)}", }
  • Pydantic BaseModel defining the input schema/parameters for the update_epic tool, including required epic_id and optional fields for updating the epic.
    class UpdateEpicParams(BaseModel): """Parameters for updating an epic.""" epic_id: str = Field(..., description="Epic ID or sys_id") short_description: Optional[str] = Field(None, description="Short description of the epic") description: Optional[str] = Field(None, description="Detailed description of the epic") priority: Optional[str] = Field(None, description="Priority of epic (1 is Critical, 2 is High, 3 is Moderate, 4 is Low, 5 is Planning)") state: Optional[str] = Field(None, description="State of story (-6 is Draft,1 is Ready,2 is Work in progress, 3 is Complete, 4 is Cancelled)") assignment_group: Optional[str] = Field(None, description="Group assigned to the epic") assigned_to: Optional[str] = Field(None, description="User assigned to the epic") work_notes: Optional[str] = Field(None, description="Work notes to add to the epic. Used for adding notes and comments to an epic")
  • Registration of the 'update_epic' tool in the central tool_definitions dictionary used by the MCP server. Maps the tool name to its handler function (update_epic_tool), input schema (UpdateEpicParams), return type, description, and serialization method.
    "update_epic": ( update_epic_tool, UpdateEpicParams, str, "Update an existing epic in ServiceNow", "str", ),
  • Import of the update_epic handler function into the tools package __init__.py, making it available for further imports and the __all__ export list.
    from servicenow_mcp.tools.epic_tools import ( create_epic, update_epic, list_epics, )
  • Helper function used by update_epic (and other tools) to unwrap, validate parameters against the Pydantic model, and check required fields.
    def _unwrap_and_validate_params(params: Any, model_class: Type[T], required_fields: List[str] = None) -> Dict[str, Any]: """ Helper function to unwrap and validate parameters. Args: params: The parameters to unwrap and validate. model_class: The Pydantic model class to validate against. required_fields: List of required field names. Returns: A tuple of (success, result) where result is either the validated parameters or an error message. """ # Handle case where params might be wrapped in another dictionary if isinstance(params, dict) and len(params) == 1 and "params" in params and isinstance(params["params"], dict): logger.warning("Detected params wrapped in a 'params' key. Unwrapping...") params = params["params"] # Handle case where params might be a Pydantic model object if not isinstance(params, dict): try: # Try to convert to dict if it's a Pydantic model logger.warning("Params is not a dictionary. Attempting to convert...") params = params.dict() if hasattr(params, "dict") else dict(params) except Exception as e: logger.error(f"Failed to convert params to dictionary: {e}") return { "success": False, "message": f"Invalid parameters format. Expected a dictionary, got {type(params).__name__}", } # Validate required parameters are present if required_fields: for field in required_fields: if field not in params: return { "success": False, "message": f"Missing required parameter '{field}'", } try: # Validate parameters against the model validated_params = model_class(**params) return { "success": True, "params": validated_params, } except Exception as e: logger.error(f"Error validating parameters: {e}") return { "success": False, "message": f"Error validating parameters: {str(e)}", }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JLKmach/servicenow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server