Skip to main content
Glama
JLKmach

ServiceNow MCP Server

by JLKmach

list_stories

Retrieve and filter ServiceNow stories by state, assignment group, timeframe, or custom query to manage agile project workflows.

Instructions

List stories from ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
limitNoMaximum number of records to return
offsetNoOffset to start from
stateNoFilter by state
assignment_groupNoFilter by assignment group
timeframeNoFilter by timeframe (upcoming, in-progress, completed)
queryNoAdditional query string

Implementation Reference

  • The handler function that implements the list_stories tool. It validates input parameters using ListStoriesParams, builds a ServiceNow query based on filters like state, assignment_group, timeframe, and query, then performs a GET request to the rm_story table API endpoint.
    def list_stories( auth_manager: AuthManager, server_config: ServerConfig, params: Dict[str, Any], ) -> Dict[str, Any]: """ List stories from ServiceNow. Args: auth_manager: The authentication manager. server_config: The server configuration. params: The parameters for listing stories. Returns: A list of stories. """ # Unwrap and validate parameters result = _unwrap_and_validate_params( params, ListStoriesParams ) if not result["success"]: return result validated_params = result["params"] # Build the query query_parts = [] if validated_params.state: query_parts.append(f"state={validated_params.state}") if validated_params.assignment_group: query_parts.append(f"assignment_group={validated_params.assignment_group}") # Handle timeframe filtering if validated_params.timeframe: now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") if validated_params.timeframe == "upcoming": query_parts.append(f"start_date>{now}") elif validated_params.timeframe == "in-progress": query_parts.append(f"start_date<{now}^end_date>{now}") elif validated_params.timeframe == "completed": query_parts.append(f"end_date<{now}") # Add any additional query string if validated_params.query: query_parts.append(validated_params.query) # Combine query parts query = "^".join(query_parts) if query_parts else "" # Get the instance URL instance_url = _get_instance_url(auth_manager, server_config) if not instance_url: return { "success": False, "message": "Cannot find instance_url in either server_config or auth_manager", } # Get the headers headers = _get_headers(auth_manager, server_config) if not headers: return { "success": False, "message": "Cannot find get_headers method in either auth_manager or server_config", } # Make the API request url = f"{instance_url}/api/now/table/rm_story" params = { "sysparm_limit": validated_params.limit, "sysparm_offset": validated_params.offset, "sysparm_query": query, "sysparm_display_value": "true", } try: response = requests.get(url, headers=headers, params=params) response.raise_for_status() result = response.json() # Handle the case where result["result"] is a list stories = result.get("result", []) count = len(stories) return { "success": True, "stories": stories, "count": count, "total": count, # Use count as total if total is not provided } except requests.exceptions.RequestException as e: logger.error(f"Error listing stories: {e}") return { "success": False, "message": f"Error listing stories: {str(e)}", }
  • Pydantic model defining the input parameters for the list_stories tool, including pagination (limit, offset), filters (state, assignment_group, timeframe, query).
    class ListStoriesParams(BaseModel): """Parameters for listing stories.""" limit: Optional[int] = Field(10, description="Maximum number of records to return") offset: Optional[int] = Field(0, description="Offset to start from") state: Optional[str] = Field(None, description="Filter by state") assignment_group: Optional[str] = Field(None, description="Filter by assignment group") timeframe: Optional[str] = Field(None, description="Filter by timeframe (upcoming, in-progress, completed)") query: Optional[str] = Field(None, description="Additional query string")
  • The registration entry in get_tool_definitions() that maps 'list_stories' to its handler function (list_stories_tool), input schema (ListStoriesParams), return type hint, description, and serialization method for the MCP server.
    "list_stories": ( list_stories_tool, ListStoriesParams, str, # Expects JSON string "List stories from ServiceNow", "json", # Tool returns list/dict ),
  • Import of list_stories function from story_tools.py in the tools package __init__.py, exposing it for use.
    from servicenow_mcp.tools.story_tools import ( create_story, update_story, list_stories,
  • Shared helper function used by list_stories (and other tools) to unwrap, validate input params against the Pydantic schema, handling various input formats.
    def _unwrap_and_validate_params(params: Any, model_class: Type[T], required_fields: List[str] = None) -> Dict[str, Any]: """ Helper function to unwrap and validate parameters. Args: params: The parameters to unwrap and validate. model_class: The Pydantic model class to validate against. required_fields: List of required field names. Returns: A tuple of (success, result) where result is either the validated parameters or an error message. """ # Handle case where params might be wrapped in another dictionary if isinstance(params, dict) and len(params) == 1 and "params" in params and isinstance(params["params"], dict): logger.warning("Detected params wrapped in a 'params' key. Unwrapping...") params = params["params"] # Handle case where params might be a Pydantic model object if not isinstance(params, dict): try: # Try to convert to dict if it's a Pydantic model logger.warning("Params is not a dictionary. Attempting to convert...") params = params.dict() if hasattr(params, "dict") else dict(params) except Exception as e: logger.error(f"Failed to convert params to dictionary: {e}") return { "success": False, "message": f"Invalid parameters format. Expected a dictionary, got {type(params).__name__}", } # Validate required parameters are present if required_fields: for field in required_fields: if field not in params: return { "success": False, "message": f"Missing required parameter '{field}'", } try: # Validate parameters against the model validated_params = model_class(**params) return { "success": True, "params": validated_params, } except Exception as e: logger.error(f"Error validating parameters: {e}") return { "success": False, "message": f"Error validating parameters: {str(e)}", }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JLKmach/servicenow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server