Skip to main content
Glama
JLKmach

ServiceNow MCP Server

by JLKmach

create_change_request

Create a new change request in ServiceNow to manage IT infrastructure modifications, specifying type, risk, impact, and schedule.

Instructions

Create a new change request in ServiceNow

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
short_descriptionYesShort description of the change request
descriptionNoDetailed description of the change request
typeYesType of change (normal, standard, emergency)
riskNoRisk level of the change
impactNoImpact of the change
categoryNoCategory of the change
requested_byNoUser who requested the change
assignment_groupNoGroup assigned to the change
start_dateNoPlanned start date (YYYY-MM-DD HH:MM:SS)
end_dateNoPlanned end date (YYYY-MM-DD HH:MM:SS)

Implementation Reference

  • The core handler function that executes the create_change_request tool. It validates input params using Pydantic model, prepares data, and makes a POST request to ServiceNow's change_request table API.
    def create_change_request( auth_manager: AuthManager, server_config: ServerConfig, params: Dict[str, Any], ) -> Dict[str, Any]: """ Create a new change request in ServiceNow. Args: auth_manager: The authentication manager. server_config: The server configuration. params: The parameters for creating the change request. Returns: The created change request. """ # Unwrap and validate parameters result = _unwrap_and_validate_params( params, CreateChangeRequestParams, required_fields=["short_description", "type"] ) if not result["success"]: return result validated_params = result["params"] # Prepare the request data data = { "short_description": validated_params.short_description, "type": validated_params.type, } # Add optional fields if provided if validated_params.description: data["description"] = validated_params.description if validated_params.risk: data["risk"] = validated_params.risk if validated_params.impact: data["impact"] = validated_params.impact if validated_params.category: data["category"] = validated_params.category if validated_params.requested_by: data["requested_by"] = validated_params.requested_by if validated_params.assignment_group: data["assignment_group"] = validated_params.assignment_group if validated_params.start_date: data["start_date"] = validated_params.start_date if validated_params.end_date: data["end_date"] = validated_params.end_date # Get the instance URL instance_url = _get_instance_url(auth_manager, server_config) if not instance_url: return { "success": False, "message": "Cannot find instance_url in either server_config or auth_manager", } # Get the headers headers = _get_headers(auth_manager, server_config) if not headers: return { "success": False, "message": "Cannot find get_headers method in either auth_manager or server_config", } # Add Content-Type header headers["Content-Type"] = "application/json" # Make the API request url = f"{instance_url}/api/now/table/change_request" try: response = requests.post(url, json=data, headers=headers) response.raise_for_status() result = response.json() return { "success": True, "message": "Change request created successfully", "change_request": result["result"], } except requests.exceptions.RequestException as e: logger.error(f"Error creating change request: {e}") return { "success": False, "message": f"Error creating change request: {str(e)}", }
  • Pydantic BaseModel defining the input schema/validation for the create_change_request tool parameters.
    class CreateChangeRequestParams(BaseModel): """Parameters for creating a change request.""" short_description: str = Field(..., description="Short description of the change request") description: Optional[str] = Field(None, description="Detailed description of the change request") type: str = Field(..., description="Type of change (normal, standard, emergency)") risk: Optional[str] = Field(None, description="Risk level of the change") impact: Optional[str] = Field(None, description="Impact of the change") category: Optional[str] = Field(None, description="Category of the change") requested_by: Optional[str] = Field(None, description="User who requested the change") assignment_group: Optional[str] = Field(None, description="Group assigned to the change") start_date: Optional[str] = Field(None, description="Planned start date (YYYY-MM-DD HH:MM:SS)") end_date: Optional[str] = Field(None, description="Planned end date (YYYY-MM-DD HH:MM:SS)")
  • Registration of the 'create_change_request' tool in the central tool_definitions dictionary used by the MCP server to expose the tool.
    "create_change_request": ( create_change_request_tool, CreateChangeRequestParams, str, "Create a new change request in ServiceNow", "str", ),
  • Import of the create_change_request function into the tools package __init__, making it available for registration.
    from servicenow_mcp.tools.change_tools import ( add_change_task, approve_change, create_change_request, get_change_request_details, list_change_requests, reject_change, submit_change_for_approval, update_change_request, )
  • Helper function used by the handler to validate and unwrap input parameters against the schema.
    def _unwrap_and_validate_params(params: Any, model_class: Type[T], required_fields: List[str] = None) -> Dict[str, Any]: """ Helper function to unwrap and validate parameters. Args: params: The parameters to unwrap and validate. model_class: The Pydantic model class to validate against. required_fields: List of required field names. Returns: A tuple of (success, result) where result is either the validated parameters or an error message. """ # Handle case where params might be wrapped in another dictionary if isinstance(params, dict) and len(params) == 1 and "params" in params and isinstance(params["params"], dict): logger.warning("Detected params wrapped in a 'params' key. Unwrapping...") params = params["params"] # Handle case where params might be a Pydantic model object if not isinstance(params, dict): try: # Try to convert to dict if it's a Pydantic model logger.warning("Params is not a dictionary. Attempting to convert...") params = params.dict() if hasattr(params, "dict") else dict(params) except Exception as e: logger.error(f"Failed to convert params to dictionary: {e}") return { "success": False, "message": f"Invalid parameters format. Expected a dictionary, got {type(params).__name__}", } # Validate required parameters are present if required_fields: for field in required_fields: if field not in params: return { "success": False, "message": f"Missing required parameter '{field}'", } try: # Validate parameters against the model validated_params = model_class(**params) return { "success": True, "params": validated_params, } except Exception as e: logger.error(f"Error validating parameters: {e}") return { "success": False, "message": f"Error validating parameters: {str(e)}", }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JLKmach/servicenow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server