Skip to main content
Glama
Augmented-Nature

Unofficial PubChem MCP Server

assess_drug_likeness

Evaluate chemical compounds for drug-likeness using Lipinski Rule of Five, Veber rules, and PAINS filters to identify promising candidates for pharmaceutical development.

Instructions

Assess drug-likeness using Lipinski Rule of Five, Veber rules, and PAINS filters

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
cidNoPubChem Compound ID (CID)
smilesNoSMILES string (alternative to CID)

Implementation Reference

  • The handler function that executes the logic for the 'assess_drug_likeness' tool. Currently implemented as a placeholder returning a 'not yet implemented' message.
    private async handleAssessDrugLikeness(args: any) { return { content: [{ type: 'text', text: JSON.stringify({ message: 'Drug-likeness assessment not yet implemented', args }, null, 2) }] }; }
  • src/index.ts:539-550 (registration)
    Registration of the 'assess_drug_likeness' tool in the list of available tools, including name, description, and input schema.
    { name: 'assess_drug_likeness', description: 'Assess drug-likeness using Lipinski Rule of Five, Veber rules, and PAINS filters', inputSchema: { type: 'object', properties: { cid: { type: ['number', 'string'], description: 'PubChem Compound ID (CID)' }, smiles: { type: 'string', description: 'SMILES string (alternative to CID)' }, }, required: [], }, },
  • Dispatch case in the tool call handler that routes 'assess_drug_likeness' calls to the specific handler method.
    case 'assess_drug_likeness': return await this.handleAssessDrugLikeness(args);
  • Input schema definition for the 'assess_drug_likeness' tool, specifying optional cid or smiles parameters.
    inputSchema: { type: 'object', properties: { cid: { type: ['number', 'string'], description: 'PubChem Compound ID (CID)' }, smiles: { type: 'string', description: 'SMILES string (alternative to CID)' }, }, required: [], },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Augmented-Nature/Augmented-Nature-PubChem-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server